(TOSEM'21) DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network
-
Environment
bash env.sh
-
Preprocessed Data
Download from data, and unzip the data under
<project root>/data
folder.
-
From Pretrained model
- Download from pretrained model.
PYTHONPATH="." python src/evaluate.py <path to the pretrained model>
-
Training and Testing
bash run.sh
Run from scratch:
We use the old version of joern to generate PDG
PYTHONPATH="." python src/joern/joern-parse.py -c <config file>
PYTHONPATH="." python src/data_generator.py -c <config file>
PYTHONPATH="." python src/preprocess/dataset_generator.py -c <config file>
PYTHONPATH="." python src/preprocess/word_embedding.py -c <config file>
PYTHONPATH="." python src/run.py -c <config file>
Please kindly cite our paper if it benefits:
@article{xiao2021deepwukong,
author = {Cheng, Xiao and Wang, Haoyu and Hua, Jiayi and Xu, Guoai and Sui, Yulei},
title = {DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network},
year = {2021},
publisher = {ACM},
volume = {30},
number = {3},
url = {https://doi.org/10.1145/3436877},
doi = {10.1145/3436877},
journal = {ACM Trans. Softw. Eng. Methodol.},
articleno = {38},
numpages = {33}
}