⚗️🔬👨🔬🧪
Chemistry Library
A pure Python package that supports a variety of functions pertaining to the vast field of chemistry.
Use the Python Package Installer (PyPI):
$ pip install -U chemlib
- Properties of all Elements
- Compounds
- Formula
- Molar Mass
- Percentage Composition by Mass
- Stoichiometric Amounts
- Oxidation States/Numbers
- Empirical Formulae
- Empirical Formula by Percentage Composition
- Combustion Analysis of Hydrocarbons
- Aqueous Solutions
- Solute
- Molarity (mol/L)
- Stoichiometric Amounts
- Dilutions
- Chemical Reactions
- Formula
- Balancing the Equation
- Combustion Reactions
- Stoichiometric Amounts
- Limiting Reagent
- Electrochemistry
- Galvanic (Voltaic) Cells
- Anode, Cathode, Cell Potential, Diagram
- Electrolysis
- Galvanic (Voltaic) Cells
- Quantum Mechanics
- Electromagnetic Waves
- Frequency, Wavelength, Energy per photon
- Energy in nth Hydrogen Orbital
- Rydberg Equation
- Electromagnetic Waves
>>> from chemlib import Element
>>> boron = Element('B') #Declare Element from its symbol
>>> boron.properties
{'AtomicNumber': 5.0, 'Element': 'Boron', 'Symbol': 'B', 'AtomicMass': 10.811, 'Neutrons': 6.0, 'Protons': 5.0, 'Electrons': 5.0, 'Period': 2.0, 'Group': 13.0, 'Phase': 'solid', 'Radioactive': False, 'Natural': True, 'Metal': False, 'Nonmetal': False, 'Metalloid': True, 'Type': 'Metalloid', 'AtomicRadius': '1.2', 'Electronegativity': 2.04, 'FirstIonization': '8.298', 'Density': '2.34', 'MeltingPoint': '2573.15', 'BoilingPoint': '4200', 'Isotopes': 6.0, 'Discoverer': 'Gay-Lussac', 'Year': '1808', 'SpecificHeat': '1.026', 'Shells': 2.0, 'Valence': 3.0, 'Config': '[He] 2s2 2p1', 'MassNumber': 11.0}
>>> boron.AtomicMass
10.811
>>> from chemlib import Compound
>>> nitric_acid = Compound("HNO3")
>>> nitric_acid.occurences
{'H': 1, 'N': 1, 'O': 3}
>>> nitric_acid.molar_mass()
63.01
>>> nitric_acid.percentage_by_mass('O') #Get percentage composition by mass of a constituent element of choice
76.174
Accepted inputs: grams, moles, and molecules
>>> from chemlib import Compound
>>> water = Compound('H2O')
>>> water.formula
'H₂O₁'
>>> water.get_amounts(grams = 2)
{'Compound': 'H₂O₁', 'Grams': 2, 'Moles': 0.111, 'Molecules': 6.685e+22}
>>> water.get_amounts(moles = 1)
{'Compound': 'H₂O₁', 'Grams': 18.01, 'Moles': 1, 'Molecules': 6.02e+23}
>>> water.get_amounts(molecules = 1.0e+24)
{'Compound': 'H₂O₁', 'Grams': 29.917, 'Moles': 1.6611, 'Molecules': 1e+24}
>>> from chemlib import Compound, Reaction
>>> H2 = Compound('H2')
>>> O2 = Compound('O2')
>>> H2O = Compound('H2O')
>>> r = Reaction(reactants = [H2, O2], products = [H2O])
>>> r.formula
'1H₂ + 1O₂ --> 1H₂O₁'
>>> r.is_balanced
False
>>> r.balance()
>>> r.formula
'2H₂ + 1O₂ --> 2H₂O₁'
>>> r.is_balanced
True
If you use chemlib in your scientific work, please consider citing:
| H. R. Ambethkar, chemlib - A Python chemistry library , 2020-- . Available at: https://github.com/harirakul/chemlib.
The reference in the BibLaTeX format:
@software{chemlib2020,
author = {Ambethkar, Hari},
title = {{chemlib} -- A Python chemistry library},
url = {https://github.com/harirakul/chemlib},
version = {2.1.9},
date = {2020--},
}