penquins: a python client for Kowalski
penquins
is a python client for Kowalski, a multi-survey data archive and alert broker for time-domain astronomy.
Install penquins
from PyPI:
pip install penquins --upgrade
Connect to a Kowalski instance:
from penquins import Kowalski
username = "<username>"
password = "<password>"
protocol, host, port = "https", "<host>", 443
kowalski = Kowalski(
username=username,
password=password,
protocol=protocol,
host=host,
port=port
)
It is recommended to authenticate once and then just reuse the generated token:
token = kowalski.token
print(token)
kowalski = Kowalski(
token=token,
protocol=protocol,
host=host,
port=port
)
Check connection:
kowalski.ping()
Most users will be interacting with Kowalski using the Kowalski.query
method.
Retrieve available catalog names:
query = {
"query_type": "info",
"query": {
"command": "catalog_names",
}
}
response = kowalski.query(query=query)
data = response.get("data")
Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near
query:
query = {
"query_type": "near",
"query": {
"max_distance": 2,
"distance_units": "arcsec",
"radec": {"query_coords": [281.15902595, -4.4160933]},
"catalogs": {
"ZTF_sources_20210401": {
"filter": {},
"projection": {"_id": 1},
}
},
},
"kwargs": {
"max_time_ms": 10000,
"limit": 7,
},
}
response = kowalski.query(query=query)
data = response.get("data")
Retrieve available catalog names:
query = {
"query_type": "info",
"query": {
"command": "catalog_names",
}
}
response = k.query(query=query)
data = response.get("data")
Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near
query:
query = {
"query_type": "near",
"query": {
"max_distance": 2,
"distance_units": "arcsec",
"radec": {"query_coords": [281.15902595, -4.4160933]},
"catalogs": {
"ZTF_sources_20210401": {
"filter": {},
"projection": {"_id": 1},
}
},
},
"kwargs": {
"max_time_ms": 10000,
"limit": 7,
},
}
response = k.query(query=query)
data = response.get("data")
Run a cone_search
query:
query = {
"query_type": "cone_search",
"query": {
"object_coordinates": {
"cone_search_radius": 2,
"cone_search_unit": "arcsec",
"radec": {
"ZTF20acfkzcg": [
115.7697847,
50.2887778
]
}
},
"catalogs": {
"ZTF_alerts": {
"filter": {},
"projection": {
"_id": 0,
"candid": 1,
"objectId": 1
}
}
}
},
"kwargs": {
"filter_first": False
}
}
response = kowalski.query(query=query)
data = response.get("data")
Run a find
query:
q = {
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"objectId": "ZTF20acfkzcg"
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
response = kowalski.query(query=q)
data = response.get("data")
Run a batch of queries in parallel:
queries = [
{
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"candid": alert["candid"]
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
for alert in data
]
responses = kowalski.batch_query(queries=queries, n_treads=4)
Users can interact with Kowalski's API
in a more direct way using the Kowalski.api
method.
Users with admin privileges can add/remove users to/from the system:
username = "noone"
password = "nopas!"
email = "user@caltech.edu"
request = {
"username": username,
"password": password,
"email": email
}
response = kowalski.api(method="post", endpoint="/api/users", data=request)
response = kowalski.api(method="delete", endpoint=f"/api/users/{username}")