Deep Q-Learning: ValueError: zero-size array to reduction operation minimum which has no identity
btyu opened this issue · 1 comments
btyu commented
When I run cells of "Deep Q learning with Doom.ipynb" in Deep Q-Learning part, error occurs in the 11th cell (Step 6). Here is the info:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-11-289a4b5c1934> in <module>()
10 # First we need a state
11 state = game.get_state().screen_buffer
---> 12 state, stacked_frames = stack_frames(stacked_frames, state, True)
13
14 # Random action
<ipython-input-6-bf05256e1e9f> in stack_frames(stacked_frames, state, is_new_episode)
6 def stack_frames(stacked_frames, state, is_new_episode):
7 # Preprocess frame
----> 8 frame = preprocess_frame(state)
9
10 if is_new_episode:
<ipython-input-5-90faeed1717d> in preprocess_frame(frame)
32
33 # Resize
---> 34 preprocessed_frame = transform.resize(normalized_frame, [84,84])
35
36 return preprocessed_frame
D:\Anaconda3\lib\site-packages\skimage\transform\_warps.py in resize(image, output_shape, order, mode, cval, clip, preserve_range)
133 out = warp(image, tform, output_shape=output_shape, order=order,
134 mode=mode, cval=cval, clip=clip,
--> 135 preserve_range=preserve_range)
136
137 return out
D:\Anaconda3\lib\site-packages\skimage\transform\_warps.py in warp(image, inverse_map, map_args, output_shape, order, mode, cval, clip, preserve_range)
817 mode=ndi_mode, order=order, cval=cval)
818
--> 819 _clip_warp_output(image, warped, order, mode, cval, clip)
820
821 return warped
D:\Anaconda3\lib\site-packages\skimage\transform\_warps.py in _clip_warp_output(input_image, output_image, order, mode, cval, clip)
568 """
569 if clip and order != 0:
--> 570 min_val = input_image.min()
571 max_val = input_image.max()
572
D:\Anaconda3\lib\site-packages\numpy\core\_methods.py in _amin(a, axis, out, keepdims)
27
28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29 return umr_minimum(a, axis, None, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
ValueError: zero-size array to reduction operation minimum which has no identity
I searched for that, and people say
This error happens when you have an empty mask (all zeros) https://github.com/matterport/Mask_RCNN/issues/47
I don't know how to fix it. So I ask you for help.
Thank you very much!
btyu commented
I ran the jupyter notebook file by updating to another folder, with configuration files copied from my vizdoom lib folder, and the problem occurred. I ran the script with the configuration files in the same folder, and it worked. I guess it was because the vizdoom configuration files. Problem solved.