Scaffold Analysis of Ligands Causing GPCR Bias Signaling
At the moment, a standard machine with CPUs will work.
Biasnet runs in two ways: Docker and manually running from source. With Docker, you can either pull an image from DockerHub, or build one on your own.
To install Docker, just follow the docker documentation.
The latest biasNet image is available on the Docker Hub.
docker pull sirimullalab/biasnet:latest
docker run -p 5000:5000 sirimullalab/biasnet:latest
curl -F smiles='ClC1=CC=C(C=C1)C2=NOC3=C2CCNCC3' localhost:5000/predict OR curl -d 'smiles=ClC1=CC=C(C=C1)C2=NOC3=C2CCNCC3' localhost:5000/predict
git clone this repo
cd /path/to/this/repo
docker build --build-arg USER=$USER --build-arg UID=$UID --build-arg GID=$GID -t biasnet .
docker run --rm biasnet:latest --smiles <compound_smiles>
- Install Miniconda, for your operating system, from https://conda.io/miniconda.html
git clone this repo
cd /path/to/this/repo
conda env create -f environment.yml
conda activate biasnet
(orsource activate biasnet
for older versions of conda)`- Example:
python3 run_biasnet.py --smiles "ClC1=CC=C(C=C1)C2=NOC3=C2CCNCC3"
Govinda KC, Jason Sanchez, Suman Sirimulla
Suman Sirimulla acknowledge support from the National Science Foundation with NSF-PREM grant #DMR-1827745.