REDIAL - 2020
This repository contains ML models for predicting Anti-SARS-CoV-2 Activities (Live Virus Infectivity
, Viral Entry
, Viral Replication
) and for performing Similarity Search
- Website: http://drugcentral.org/Redial
Table of Contents
- Requirements
- Installation and Initialization
- Docker API Content
- Contributors
- Funding
- Acknowledgements
- License
Requirements
At the moment, a standard machine with CPUs will work.
Installation and Initialization
Currently, we suggest two ways to run REDIAL-2020 locally: Docker and manually running from source. With Docker, you can either pull an image from DockerHub, or build one on your own.
Docker
To install Docker, just follow the docker documentation.
1. Run Docker Images
The latest Redial-2020 images are available on the Docker Hub.
docker pull sirimullalab/redial-2020:latest
docker run -p 5000:5000 sirimullalab/redial-2020:latest
curl -F smiles='CCCC' localhost:5000/predict
ORcurl -d 'smiles=CCCC' localhost:5000/predict
2. Build your own images
git clone this repo
cd /path/to/this/repo
docker build --build-arg USER=$USER --build-arg UID=$UID --build-arg GID=$GID -t redial-2020 .
docker run -p 5000:5000 redial-2020
curl -F smiles='CCCC' localhost:5000/predict
ORcurl -d 'smiles=CCCC' localhost:5000/predict
NOTE: The API accepts form-request / post-request.
Manual Start
- Install Miniconda, for your operating system, from https://conda.io/miniconda.html
git clone this repo
cd /path/to/this/repo
conda env create -f environment-redial-2020.yml
conda activate redial-2020
(orsource activate redial-2020
for older versions of conda)cd batch_screen
- Example Commands :
python3 run_predictions.py --csvfile <PATH_TO_CSV_FILE> --results <PATH_TO_SAVE_RESULTS>
Note:
- Input csv file should contain atleast one column having
SMILES
as column name.
Docker API Content
API URL: hostname:port/predict
- Found here -
./docker_api_content.yml
Contributors
Srijan Verma, Govinda KC, Mahmudulla Hassan, Giovanni Bocci, Suman Sirimulla, Tudor I. Oprea
Citation
Please cite: KC, G.B., Bocci, G., Verma, S. et al. A machine learning platform to estimate anti-SARS-CoV-2 activities. Nat Mach Intell 3, 527–535 (2021). https://doi.org/10.1038/s42256-021-00335-w
@Article{KC2021,
author={KC, Govinda B. and Bocci, Giovanni and Verma, Srijan and Hassan, Md Mahmudulla and Holmes, Jayme and Yang, Jeremy J. and Sirimulla, Suman and Oprea, Tudor I.},
title={A machine learning platform to estimate anti-SARS-CoV-2 activities},
journal={Nature Machine Intelligence},
year={2021},
month={Jun},
day={01},
volume={3},
number={6},
pages={527-535},
issn={2522-5839},
doi={10.1038/s42256-021-00335-w},
url={https://doi.org/10.1038/s42256-021-00335-w}
}
Acknowledgments
Suman Sirimulla acknowledge support from the National Science Foundation with NSF-PREM grant #DMR-1827745.