A project for exploring london house prices in 2018
The inspriation is coming from my needs to buy a house
- Filter through the data from the UK house dataset.
- Obtain some insightful information from the filtered dataset.
- Use GeoPandas to plot a London heatmap with different borourgh's average flat prices
- Explore further with the London house price 2018 dataset.
- Process the dataset to generate more insights (e.g. smoothing, secondary data calculation, etc.)
- Use fbprophet to do some seasonality analysis, and trying to predict the average London flat price for the rest of 2018
- Use Zoopla to scrape housing data
- An simple API was built
- All files are in package directory
- There are jupyter notebook demonstrations to illustrate how these package can be used.
district_postcode = [
('Hackney', 'E8'), ('E-head', 'E1'), ('Bethal green', 'E2'), ('EC-head', 'EC1'),
('Bishopsgate', 'EC2'),('French chruch street', 'EC3'), ('Fleet strett', 'EC4'),
('N-head', 'N1'), ('Highbury', 'N5'), ('Highgate', 'N6'), ('Finsbury park', 'N4'),
('NW-head', 'NW1'),('Cricklewood', 'NW2'), ('Hampstead', 'NW3'), ('Kentish town', 'NW5'),
('Kilburn', 'NW6'), ('St John wood', 'NW8'),('SE-Head', 'SE1'),
('Greenwich', 'SE10'), ('SW-Head', 'SW1'), ('Chelsea', 'SW3'),
('Clapham', 'SW4'), ('Earls court', 'SW5'),('Fulham', 'SW6'),
('South kensington', 'SW7'), ('South lambeth', 'SW8'), ('Stockwell', 'SW9'),
('West Brompton', 'SW10'), ('SW-head', 'SW11'), ('Paddington','W2'),
('North Kensington', 'W10'), ('Notting hill', 'W11'), ('West Kensington', 'W14'),
('WC-head', 'WC1'), ('Strand', 'WC2')
]
- Used PySide2 instead of Tkinter
- Complete new design
- Web browsing capability
- 30-day moving average smoothing
- All graphs are in one tab now.