Umccrise post-processess an output from bcbio-nextgen somatic variant calling pipeline for cancer samples:
- Filters small somatic calls with panel of normals
- Filters small germline calls with key genes
- Runs PCGR for somatic and germline variants
- Generates an Rmd report with mutational signatures and strand bias analysis
- QCs coverage for 300 key cancer genes
- Filters CNV and plots a diagram
- Filters SV and generates files to view in Ribbon
- Generates mini-bams to view in IGV
- Copies MultiQC reports and summaries from bcbio
Contents:
Clone the repository
git clone https://github.com/umccr/umccrise
Install conda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
bash miniconda.sh -b -p ./miniconda && rm miniconda.sh
. miniconda/etc/profile.d/conda.sh
Install umccrise
conda env create -p $(pwd)/miniconda/envs/umccrise --file environment.yml
conda activate $(pwd)/miniconda/envs/umccrise
pip install -e .
To automate sourcing in the future, you can create a loader script
cat <<EOT > load_umccrise.sh
SCRIPTPATH=\$(readlink -e $(pwd))
. \$SCRIPTPATH/miniconda/etc/profile.d/conda.sh
conda activate \$SCRIPTPATH/miniconda/envs/umccrise
EOT
Install PCGR
The PCGR data bundle gets refreshed every release, so please select the appropriate one from PCGR's README!
# Clone the fork that is decoupled from Docker and install
git clone https://github.com/vladsaveliev/pcgr
bash -x pcgr/install_no_docker/install.sh
# Download the data bundles
pip install gdown
gdown https://drive.google.com/uc?id=<GDOCS_ID_SEE_PCGR_DATABUNDLE_README> -O - | tar xvfz - # hg19
gdown https://drive.google.com/uc?id=<GDOCS_ID_SEE_PCGR_DATABUNDLE_README> -O - | tar xvfz - # hg38
# (Optional) if you are running on AWS, upload the PCGR data bundles to S3 like this:
gdown https://drive.google.com/uc?id=<GDOCS_ID_SEE_PCGR_DATABUNDLE_README> -O - | aws s3 cp - s3://umccr-umccrise-refdata-dev/Hsapiens/GRCh37/PCGR/pcgr.databundle.grch37.YYYMMDD.tgz
gdown https://drive.google.com/uc?id=<GDOCS_ID_SEE_PCGR_DATABUNDLE_README> -O - | aws s3 cp - s3://umccr-umccrise-refdata-dev/Hsapiens/hg38/PCGR/pcgr.databundle.grch38.YYYMMDD.tgz
source load_umccrise.sh
git pull # if the code base changed
conda env update -f environment.yml # if dependencies changed
./setup.py develop && source deactivate && source load_umccrise.sh # if added/renamed packages or scripts
Tests are stored in a separate repository https://github.com/umccr/umccrise_test_data
source load_umccrise.sh
git clone https://github.com/umccr/umccrise_test_data
nosetests -s umccrise_test_data/test.py -a normal
Raijin:
source /g/data3/gx8/extras/umccrise/load_umccrise.sh
Spartan:
source /data/cephfs/punim0010/extras/umccrise/load_umccrise.sh
Runs the patient analysis pipeline on bcbio-nextgen final
folder.
umccrise /path/to/bcbio/project/final -j 30 # run using 30 CPUs
The output will be created in umccrised
folder. To override, use -o
:
umccrise /path/to/bcbio/project/final -o umccrised_results
Umccrise workflow consists of the following steps: pcgr
, coverage
, structural
, small_variants
, rmd
, multiqc
, copy_logs
, igv
.
To run just a particular step (or steps), use:
umccrise /path/to/bcbio/project/final <step_name>
Where <step_name>
is from the list above. E.g.:
umccrise /path/to/bcbio/project/final pcgr
Note that the igv
step (preparing minibams and uploading them to s3://umccr-igv
) takes ~5 hours for a WGS sample compared to ~20 minutes for all other steps combined. For that reason, it is always executed in the end of the pipeline, so you can expect that when it is being executed, all other output is ready.
By default, Umccrise will process all batches in the run in parallel. You can submit only certain samples/batchs using --sample
or --batch
arguments, e.g.:
umccrise /path/to/bcbio/project/final --batch cup-batch
umccrise /path/to/bcbio/project/final --sample cup-tumor_1,cup-tumor_2
Or you might want to exclude certain samples/batches with --exclude
:
umccrise /path/to/bcbio/project/final --exclude cup-tumor_1,cup-batch_2
Set --cluster-auto
option to submit jobs on HPC cluster. Supports Spartan for now.
umccrise /path/to/bcbio/project/final -j 30 --cluster-auto
Alternatively, you can specify a custom submission template with --cluster-cmd
, e.g.:
umccrise /path/to/bcbio/project/final -j 30 --cluster-cmd "sbatch -p vccc -n {threads} -t 24:00:00 --mem {resources.mem_mb} -J umccrise"
Make sure to use -j
outside of that template: this options tells snakemake how many cores is allowed to use at single moment.
Umccrise recognizes Spartan and NCI environments. You can alternatively provide your own reference data:
-
--ref-fasta
- path to reference fasta (e.g. /genomes/hg19.fa); .fai file should exist; -
--truth-regions
- path to GiaB truth regions; -
--bcbio-genomes
- alternatively you can specify the path to full bcbio genomes installation, e.g.--bcbio-genomes /bcbio/genomes
or--bcbio-genomes /bcbio/genomes/Hsapiens/hg38
; -
--pon
- panel of normals directory, should containpanel_of_normals.snps.vcf.gz(.tbi)
andpanel_of_normals.indels.vcf.gz(.tbi)
which are built withSnakefile.prep_normals
at https://github.com/umccr/vcf_stuff/tree/master/vcf_stuff/panel_of_normals
Example:
umccrise /path/to/bcbio/project/final \
--bcbio-genomes tests/umccrise_test_data/data/genomes \
--pon tests/umccrise_test_data/data/panel_of_normals
umccrised/
{batch}/ # - Folder with a batch {batch} (tumor/normal pair) analysis
{batch}-{sample}-rmd_report.html # - Rmd report with mutational signatures, AF frequencies,
# structural variants, and strand bias plots
coverage/
{batch}-{sample}-indexcov/index.html # - Plots by `goleft indexcov`
{batch}-{sample}-normal.callable.bed # - Coverage for exons of 300 AstraZeneca key cancer genes,
{batch}-{sample}-tumor.callable.bed # calculated by `goleft depth`. The "callable" coverage
{batch}-{sample}-normal.depth.bed # thresholds: 10x for normal, 30x for tumor.
{batch}-{sample}-tumor.depth.bed #
igv/
{batch}-{sample}-normal-mini.bam # - Minibams, containing locations of AZ 300 cancer genes,
{batch}-{sample}-tumor-mini.bam # and areas around passed variants (SNV, indels, SV, CNV)
pcgr/
{batch}-{sample}-somatic.pcgr_acmg.html
{batch}-{sample}-normal.pcgr_acmg.html
snv/
{batch}-{sample}-somatic-ensemble-pon_softfiltered.vcf.gz # - Somatic small variants (SNV and indels), soft- and
{batch}-{sample}-somatic-ensemble-pon_hardfiltered.vcf.gz # hard-filtered against the panel of normals
{batch}-{sample}-normal-ensemble-cancer_genes.vcf.gz # - Germline small variants, subset to 106 cancer genes
structural/
{batch}-{sample}-sv-prioritize-manta-pass.bedpe # - Prioritized Manta SV calls in differrent
{batch}-{sample}-sv-prioritize-manta-pass.ribbon.bed # formats (e.g. to view in Ribbon)
{batch}-{sample}-sv-prioritize-manta-pass.tsv #
{batch}-{sample}-sv-prioritize-manta-pass.vcf #
{batch}-{sample}-cnvkit-diagram.pdf # - Diagram of CNV called by CNVkit
log/
config/ # - Copy of config folder from the original bcbio-nextgen run
{project-name}-template.yaml #
{project-name}.csv #
{project-name}.yaml #
{project-name}-data_versions.csv # - Copy of the bcbio-nextgen file with reference data versions
{project-name}-programs.txt # - Copy of the bcbio-nextgen file with software versions
{project-name}-multiqc_report.html # - Project-level MultiQC summary report: coverage stats and more
Download conda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
bash miniconda.sh -b -p ./miniconda && rm miniconda.sh
. miniconda/etc/profile.d/conda.sh
Create minimal environment
conda env create --file dev_extras/environment_wrapper.yml
conda activate umccrise
pip install -e .
Pull docker
docker pull umccr/umccrise:latest
Testing
git clone https://github.com/umccr/umccrise_test_data
nosestests -s umccrise_test_data/test.py -a docker
Usage
umccrise --docker \
umccrise_test_data/data/bcbio_test_project \
-o umccrise_test_data/results/dockerized \
-j 2 \
--bcbio-genomes umccrise_test_data/data/genomes \
--pon umccrise_test_data/data/panel_of_normals