Frequency-based Boundary-guided Attention Network for Polyp Segmentation from Colonoscopy Images (Elsevier CMPB2024 Submission)
STEP1. Download Github Code
STEP2. Download polyp segmentation dataset in following link.
STEP3. Move dataset into folder 'dataset/BioMedicalDataset'
STEP4-1. Download model pre-trained weights in following link
STEP4-2. Move pre-trained weights into folder model_weights
STEP4-3. Enter following command
CUDA_VISIBLE_DEVICES=[GPU Number] python3 IS2D_main.py --num_workers 4 --data_path dataset/BioMedicalDataset --save_path model_weights --train_data_type CVC-ClinicDB --test_data_type CVC-ClinicDB --batch_size 16 --criterion BCE --final_epoch 200 --optimizer_name Adam --lr 0.0001 --LRS_name CALRS --model_name BGANet
STEP4-1. Enter following command
CUDA_VISIBLE_DEVICES=[GPU Number] python3 IS2D_main.py --num_workers 4 --data_path dataset/BioMedicalDataset --save_path model_weights --train_data_type CVC-ClinicDB --test_data_type CVC-ClinicDB --batch_size 16 --criterion BCE --final_epoch 200 --optimizer_name Adam --lr 0.0001 --LRS_name CALRS --model_name BGANet --train