/CUDA_CNN

Various version (CPU, CUDA_NAIVE, CUDA_TILED, GEMM) convolutional neural network implementations by Heechul Lim

Primary LanguageMakefile

CNN implementation with C++ and CUDA

Various versions (CPU, CUDA_NAIVE, CUDA_TILED, GEMM) of convolutional neural network implementations
by Heechul Lim

Layer configuration

  • Convolution (Forward CPU, CUDA_NAIVE, CUDA_TILED, GEMM)
    Input: 1 * 32 * 32
    Output: 1 * 20 * 20
    Kernel size: 13   Kernel dimension: 8

  • Pooling (Forward CPU, CUDA_NAIVE, CUDA_TILED)
    Input: 8 * 20 * 20
    Output: 8 * 5 * 5
    Kernel size: 4

  • Relu (CUDA)

  • Inner prodect 1 (CUDA)
    Input: 8 * 5 * 5 (flatten 200)
    Output: 200

  • Relu (CUDA)

  • Inner prodect 2 (CUDA)
    Input: 200
    Output: 200

  • Relu (CUDA)

  • Inner prodect 3 (CUDA)
    Input: 200
    Output: 10

  • Softmax

Computational cost of convolution: 80-90% of the total execution
(http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-deep-learning-with-cuDNN-webinar.pdf)

Dataset

  • MNIST: 6k train set, 1k test set
  • 1 * 32 * 32 (padding 2)

Accuracy

  • 1.3 epoch: 90%
  • 30 epoch: 98%

It depends on minibatch number and learning rate

Experiment environment

  • CPU: Xeon E5-2630 v4 @ 2.2Ghz
  • GPU: NVIDIA GTX 1080 TI

Result with training set (6k)

  • Minibatch 100
Name Elapsed time (1 epoch) Processing speed (images/sec)
CPU 39.391 1523.2
CUDA NAIVE 5.693 10539.9
CUDA TILED 5.160 11628.1
GEMM 7.890 7604.7
  • Minibatch 2
Name Elapsed time (1 epoch) Processing speed (images/sec)
CPU 53.303 1125.6
CUDA NAIVE 17.048 3519.5
CUDA TILED 15.877 3778.9
GEMM 18.475 3247.6

Usage

cd ./Release
make clean
make
./CNN

Reference