__ _
/ / (_)__ __ ____ __
/ /__/ / _ \/ // /\ \ /
/____/_/_//_/\_,_//_\_\
/ _ \/ _ \
__ _ __ _\___/_//_/ __ _
/ / (_) /____ | |/_/__| | / /____ __ ____(_)__ _____ __
/ /__/ / __/ -_)> </___/ |/ / -_) \ // __/ (_-</ __/ |/ /
/____/_/\__/\__/_/|_| |___/\__/_\_\/_/ /_/___/\__/|___/
Copyright (c) 2019-2021, Linux-on-LiteX-VexRiscv Developers
Note: Tested on Ubuntu 18.04.
In this repository, we experiment running Linux with VexRiscv CPU, a 32-bits Linux Capable RISC-V CPU written in Spinal HDL. A SoC around the VexRiscv CPU is created using LiteX as the SoC builder and LiteX's cores written in Migen Python DSL (LiteDRAM, LiteEth, LiteSDCard). All the components used to create the SoC are open-source and the flexibility of Spinal HDL/Migen allow targeting easily very various FPGA devices/boards: Lattice, Altera, Xilinx, Microsemi FPGAs with SDRAM/DDR/DDR2/DDR3/DDR4 RAMs, RMII/MII/RGMII/1000BASE-X Ethernet PHYs. On Lattice ECP5 FPGAs, the open source toolchain allows creating full open-source SoC with open-source cores and toolchain!
This project demonstrates how high level HDLs (Spinal HDL, Migen) enable new possibilities and complement each other. Results shown here are the results of a productive collaboration between open-source communities.
Name | FPGA Family | FPGA device | CPU Frequency | RAM | Flash | Ethernet | SDCard |
---|---|---|---|---|---|---|---|
Acorn CLE215+ | Xilinx Artix7 | XC7A200T | 100MHz | 16-bits 1GB DDR3 | 16MB QSPI* | No | No |
Arty(A7) | Xilinx Artix7 | XC7A35T | 100MHz | 16-bits 256MB DDR3 | 16MB QSPI | 100Mbps MII | No |
ArtyS7 | Xilinx Spartan7 | XC7S50 | 100MHz | 16-bits 256MB DDR3 | 16MB QSPI | No | No |
NeTV2 | Xilinx Artix7 | XC7A35T | 100MHz | 32-bits 512MB DDR3 | 16MB QSPI* | 100Mbps RMII | Yes |
Genesys2 | Xilinx Kintex7 | XC7K325T | 125MHz | 32-bits 1GB DDR3 | 32MB QSPI* | 1Gbps RGMII* | Yes |
KC705 | Xilinx Kintex7 | XC7K325T | 125MHz | 64-bits 1GB DDR3 | 32MB QSPI* | 1Gbps GMII | Yes |
KCU105 | Xilinx KintexU | XCKU40 | 125MHz | 64-bits 1GB DDR4 | 64MB QSPI* | 1Gbps 1000BASE-X | Yes |
ZCU104 | Xilinx ZynqU+ | XCZU7EV | 125MHz | 64-bits 1GB DDR4 | 64MB QSPI* | 1Gbps RGMII* | Yes* |
Nexys4DDR | Xilinx Artix7 | XC7A100T | 100MHz | 16-bits 128MB DDR2 | 16MB QSPI* | 100Mbps RMII | Yes |
Nexys Video | Xilinx Artix7 | XC7A200T | 100MHz | 16-bits 512MB DDR3 | 32MB QSPI* | 1Gbps RMII* | Yes |
miniSpartan6 | Xilinx Spartan6 | XC6SLX25 | 80MHz | 16-bits 32MB SDR | 8MB QSPI* | No | Yes |
Pipistrello | Xilinx Spartan6 | XC6SLX45 | 83MHz | 16-bits 64MB LPDDR | 16MB QSPI* | No | Yes* |
XCU1525 | Xilinx Ultrascale+ | XCVU9P | 125MHz | 64-bits 4GB DDR4 | No | No | No |
Versa ECP5 | Lattice ECP5 | LFE5UM5G 45F | 75MHz | 16-bits 128MB DDR3 | 16MB QSPI* | 1Gbps RGMII | No |
HADBadge | Lattice ECP5 | LFE5U-45F | 48MHz | 8-bits 32MB SDR | 16MB QSPI* | No | No |
ULX3S | Lattice ECP5 | LFE5U 45F | 50MHz | 16-bits 32MB SDR | 4MB QSPI* | No | Yes |
OrangeCrab | Lattice ECP5 | LFE5U 25F | 48MHz | 16-bits 128MB SDR | 4MB QSPI* | No | Yes |
ButterStick | Lattice ECP5 | LFE5UM5G 85F | 60MHz | 16-bits 1GB DDR3 | 4MB QSPI* | Yes | Yes* |
CamLink 4K | Lattice ECP5 | LFE5U 25F | 81MHz | 16-bits 128MB SDR | No | No | No |
TrellisBoard | Lattice ECP5 | LFE5UM5G 85F | 75MHz | 32-bits 1GB DDR3 | 16MB QSPI* | 1Gbps RGMII* | Yes |
ECPIX-5 | Lattice ECP5 | LFE5UM5G 85F | 50MHz | 16-bits 512MB DDR3 | 16MB QSPI | 1Gbps RGMII | Yes |
De0Nano | Intel Cyclone4 | EP4CE22F | 50MHz | 16-bits 32MB SDR | No | No | No |
De10Lite | Intel MAX10 | 10M50DA | 50MHz | 16-bits 64MB SDR | No | No | No |
De10Nano | Intel Cyclone5 | 5CSEBA6U23I7 | 50MHz | 16-bits 32MB SDR | No | No | Yes |
Avalanche | Microsemi PolarFire | MPF300TS | 100MHz | 16-bits 256MB DDR3 | 8MB QSPI* | 1Gbps RGMII* | No |
QM T EP4CE15 | Intel Cyclone4 | EP4CE15F | 50MHz | 16-bits 32MB SDR | No | No | No |
Note: *=present on the board but not yet supported.
Note: Avalanche support can be found in RISC-V - Getting Started Guide thanks to Antmicro.
Note: On FPGA without distributed ram (as Cyclone IV), consider using the --without-out-of-order-decoder option to reduce area.
$ sudo apt install build-essential device-tree-compiler wget git python3-setuptools
$ git clone https://github.com/litex-hub/linux-on-litex-vexriscv
$ cd linux-on-litex-vexriscv
Pre-built bistreams for the common boards and pre-built Linux images can be found here and will get you started quickly and easily without the need to compile anything.
$ wget https://raw.githubusercontent.com/enjoy-digital/litex/master/litex_setup.py
$ chmod +x litex_setup.py
$ ./litex_setup.py init install --user (--user to install to user directory)
For more information, please visit: https://github.com/enjoy-digital/litex/wiki/Installation
$ wget https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14.tar.gz
$ tar -xvf riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14.tar.gz
$ export PATH=$PATH:$PWD/riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14/bin/
$ sudo apt install verilator
$ sudo apt install libevent-dev libjson-c-dev
$ sudo apt install libtool automake pkg-config libusb-1.0-0-dev
$ git clone https://github.com/ntfreak/openocd.git
$ cd openocd
$ ./bootstrap
$ ./configure --enable-ftdi
$ make
$ sudo make install
$ ./sim.py
You should see Linux booting and be able to interact with it:
__ _ __ _ __
/ / (_) /____ | |/_/
/ /__/ / __/ -_)> <
/____/_/\__/\__/_/|_|
(c) Copyright 2012-2019 Enjoy-Digital
(c) Copyright 2012-2015 M-Labs Ltd
BIOS built on May 2 2019 18:58:54
BIOS CRC passed (97ea247b)
--============ SoC info ================--
CPU: VexRiscv @ 1MHz
ROM: 32KB
SRAM: 4KB
MAIN-RAM: 131072KB
--========= Peripherals init ===========--
--========== Boot sequence =============--
Booting from serial...
Press Q or ESC to abort boot completely.
sL5DdSMmkekro
Timeout
Executing booted program at 0x20000000
--============= Liftoff! ===============--
VexRiscv Machine Mode software built May 3 2019 19:33:43
--========== Booting Linux =============--
[ 0.000000] No DTB passed to the kernel
[ 0.000000] Linux version 5.0.9 (florent@lab) (gcc version 8.3.0 (Buildroot 2019.05-git-00938-g75f9fcd0c9)) #1 Thu May 2 17:43:30 CEST 2019
[ 0.000000] Initial ramdisk at: 0x(ptrval) (8388608 bytes)
[ 0.000000] Zone ranges:
[ 0.000000] Normal [mem 0x00000000c0000000-0x00000000c7ffffff]
[ 0.000000] Movable zone start for each node
[ 0.000000] Early memory node ranges
[ 0.000000] node 0: [mem 0x00000000c0000000-0x00000000c7ffffff]
[ 0.000000] Initmem setup node 0 [mem 0x00000000c0000000-0x00000000c7ffffff]
[ 0.000000] elf_hwcap is 0x1100
[ 0.000000] Built 1 zonelists, mobility grouping on. Total pages: 32512
[ 0.000000] Kernel command line: mem=128M@0x40000000 rootwait console=hvc0 root=/dev/ram0 init=/sbin/init swiotlb=32
[ 0.000000] Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
[ 0.000000] Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.000000] Sorting __ex_table...
[ 0.000000] Memory: 119052K/131072K available (1957K kernel code, 92K rwdata, 317K rodata, 104K init, 184K bss, 12020K reserved, 0K cma-reserved)
[ 0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
[ 0.000000] NR_IRQS: 0, nr_irqs: 0, preallocated irqs: 0
[ 0.000000] clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0x114c1bade8, max_idle_ns: 440795203839 ns
[ 0.000155] sched_clock: 64 bits at 75MHz, resolution 13ns, wraps every 2199023255546ns
[ 0.001515] Console: colour dummy device 80x25
[ 0.008297] printk: console [hvc0] enabled
[ 0.009219] Calibrating delay loop (skipped), value calculated using timer frequency.. 150.00 BogoMIPS (lpj=300000)
[ 0.009919] pid_max: default: 32768 minimum: 301
[ 0.016255] Mount-cache hash table entries: 1024 (order: 0, 4096 bytes)
[ 0.016802] Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes)
[ 0.044297] devtmpfs: initialized
[ 0.061343] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[ 0.061981] futex hash table entries: 256 (order: -1, 3072 bytes)
[ 0.117611] clocksource: Switched to clocksource riscv_clocksource
[ 0.251970] Unpacking initramfs...
[ 2.005474] workingset: timestamp_bits=30 max_order=15 bucket_order=0
[ 2.178440] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
[ 2.178909] io scheduler mq-deadline registered
[ 2.179271] io scheduler kyber registered
[ 3.031140] random: get_random_bytes called from init_oops_id+0x4c/0x60 with crng_init=0
[ 3.043743] Freeing unused kernel memory: 104K
[ 3.044070] This architecture does not have kernel memory protection.
[ 3.044472] Run /init as init process
mount: mounting tmpfs on /dev/shm failed: Invalid argument
mount: mounting tmpfs on /tmp failed: Invalid argument
mount: mounting tmpfs on /run failed: Invalid argument
Starting syslogd: OK
Starting klogd: OK
Initializing random number generator... [ 4.374589] random: dd: uninitialized urandom read (512 bytes read)
done.
Starting network: ip: socket: Function not implemented
ip: socket: Function not implemented
FAIL
Welcome to Buildroot
buildroot login: root
login[48]: root login on 'hvc0'
# help
Built-in commands:
------------------
. : [ [[ alias bg break cd chdir command continue echo eval exec
exit export false fg getopts hash help history jobs kill let
local printf pwd read readonly return set shift source test times
trap true type ulimit umask unalias unset wait
#
#
The prebuilt bitstreams for the supported boards are provided, so you can just use them for quick testing, if you want to rebuild the bitstreams you will need to install the toolchain for your FPGA:
FPGA family | Toolchain |
---|---|
Xilinx Ultrascale | Vivado |
Xilinx 7-Series | Vivado/SymbiFlow* |
Xilinx Spartan6 | ISE |
Lattice ECP5 | Yosys+Trellis+Nextpnr |
Altera Cyclone4 | Quartus Prime |
Once installed, build the bitstream with:
$ ./make.py --board=XXYY --cpu-count=X --build
To load the bitstream to you board, run:
$ ./make.py --board=XXYY --cpu-count=X --load
Note: If you are using a Versa board, you will need to change J50 to bypass the iSPclock. Re-arrange the jumpers to connect pins 1-2 and 3-5 (leaving one jumper spare). See p19 of the Versa Board user guide.
Note: *=to select a different toolchain use the
--toolchain
option, i.e.:./make.py --board=arty --toolchain=symbiflow --build
All the boards support Serial loading of the Linux images and this is the only way to load them when the board does not have others communications interfaces or storage capability.
To load the Linux images over Serial, use the lxterm terminal/tool provided by LiteX and run:
$ lxterm --images=images/boot.json /dev/ttyUSBX --speed=1e6
The images should load and you should see Linux booting :)
Note: lxterm is automatically installed with LiteX.
Note: since on some boards JTAG/Serial is shared, when you will run lxterm after loading the board, the BIOS serialboot will already have timed out. You will need to press Enter, see if you have the BIOS prompt and type reboot.
Since loading over Serial is working for all boards, this is the recommended way to do initial tests even if your board has more capabilities.
For boards with Ethernet support, the Linux images can be loaded over TFTP. You need to copy the files from images directory to your TFTP root directory. The default Local IP/Remote IP are 192.168.1.50/192.168.1.100 but you can change it with the --local-ip and --remote-ip arguments.
Once the bistream is loaded, the board you try to retrieve the files on the TFTP server. If not successful or if the boot already timed out when you see the BIOS prompt, you can retry with the netboot command.
The images will be loaded to RAM and you should see Linux booting :)
For boards with SDCard support, the Linux images can be loaded from it. You need to copy the files from images directory to your SDCard root directory (with a FAT partition).
The images will be loaded to RAM and you should see Linux booting :)
Note: For more information about the possible ways to load application code to the CPU with LiteX, please have a look at the LiteX's wiki.
Please visit the HOWTO document to learn how to configure and use the peripherals from Linux.
$ git clone http://github.com/buildroot/buildroot
$ cd buildroot
$ make BR2_EXTERNAL=../linux-on-litex-vexriscv/buildroot/ litex_vexriscv_defconfig
$ make
The binaries are located in output/images/.
$ git clone https://github.com/litex-hub/opensbi --branch 0.8-linux-on-litex-vexriscv
$ cd opensbi
$ make CROSS_COMPILE=riscv-none-embed- PLATFORM=litex/vexriscv
The binary will be located at build/platform/litex/vexriscv/firmware/fw_jump.bin.
If the VexRiscv configuration you ask isn't already generated, you will need to install java and SBT on your machine to enable their local on demande generation.
To install java and SBT see Install VexRiscv requirements: https://github.com/enjoy-digital/VexRiscv-verilog#requirements
Not needed but can make loading/flashing bitstreams easier:
$ git clone https://github.com/litex-hub/litex-buildenv-udev
$ cd litex-buildenv-udev
$ make install
$ make reload