/magnumSTL

Primary LanguageJupyter NotebookBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

YAML Format

Model

model:
 time_horizon: # MPC horizon

 dt: # time steps

 vars:
   state: [x y] # list of state variables
   input: [u] # list of input variables
   env: [w] # list of environment variables

 bounds: # list of key-values, variable: (lower_bound, upper_bound)
   x: (0, 2) # example for variable x

Specification

init:
  - stl: x = 0
  - stl: y = 1

sys:
  - name: FooBar # optional name for the constraint
    stl: "F[0,2](x > 5)"
    pri: 1 # optional priority metadata for diagnosis

dyn: # Dynamics, given in slight extension of stl. 
     # Adding primes to variable means previous state.
     # For example: x' is x[t - dt]
  - stl: G[0, 4](-1*u' + dt*1*x' + 5*u = 0)
  - stl: G[0, 4](-1*u' + dt*1*y' + u = 0)

See examples/feasible_example.yaml

Non-Adversarial one off game

import magnum
from magnum.solvers import milp

# Load game scenario
g = magnum.from_yaml("examples/feasible_example.yaml")

# We're going to use the MILP solver so need to discretize
g = magnum.discretize_game(g)

# Pass to MILP oracle and print solution
print(milp.encode_and_run(g))

Non-Adversarial MPC Usage example

import magnum

# Load game scenario
g = magnum.from_yaml("examples/feasible_example.yaml")

# Create generator receding horizon mpc

controller = magnum.mpc(g)
print(next(controller)[0]) # prints state
print(next(controller)) # prints state, spec
print(controller.send(measurements)) # send measurements and print state, spec

Adversarial MPC Usage example

import magnum from magnum.solvers.cegis import cegis

g = magnum.from_yaml("examples/feasible_example.yaml") g = magnum.discretize_game(g) print(cegis(g))