A simple library for Haskell that allows relational programming. It is made for educational purpose.
- core.logic
- Relational Programming in miniKanren: Techniques, Applications, and Implementations
- logict
...more examples in Examples.hs
do
a <- fresh
b <- fresh
membero a ([1,2,3] :: [Int])
membero b ([2,3,4] :: [Int])
a =/= b
c <- fresh
c === [a,b]
return c
=> [[1, 2],[1, 3],[1, 4],[2, 3],[2, 4],[3, 2],[3, 4]]
do
q <- fresh
w <- fresh
appendo q w (toTerm [1,2,3,4 :: Int])
return [q,w]
=> [[[], [1, 2, 3, 4]],[[1], [2, 3, 4]],[[1, 2], [3, 4]],[[1, 2, 3], [4]],[[1, 2, 3, 4], []]]
do
[a,b,c,d,e] <- replicateM 5 fresh
[a,b,c,d] === [a, a, TInt 3, c]
return [a,b,c,d,e]
=> [[?_0, ?_0, 3, 3, ?_4]]
Logic formulas are represented as monadic computations in Monad(Plus) MLogic
.
bind
corresponds to conjunction, mplus
to disjunction.
fresh :: MLogic LVar
introduces new variable.
(===) :: (Termable a, Termable b) => a -> b -> Predicate
succeeds if a
unifies with b
.
To get results use run :: (Termable a) => MLogic a -> [Term]
function, it returns lazy list of possible solutions.
(=/=)
introduces disequality constrain.
conso a b c
succeeds if a
cons b
equals c
.
success
always succeeds.
fail
never succeeds.
membero, heado, tailo, emptyo, appendo
lists precicates.
More in sources ;).
Declarative description of correct sudoku solution:
distrincto vars = sequence_ [a =/= b | a <- vars, b <- vars, a /= b]
domain col var = msum [var === x | x <- col]
initBoard board rows =
sequence_ [ var === val | x <- [0..(size-1)], y <- [0..(size-1)],
let val = (board !! x) !! y,
val /=0,
let var = (rows !! x) !! y ]
where size = length rows
sudoku board = do
let size = length board
let sqrSize = floor $ sqrt $ fromIntegral size
let cells = size * size
vars <- replicateM cells fresh -- one variable for each cell
let rows = [[ vars !! (x * size + y) | y <- [0..(size-1)]] | x <- [0..(size-1)]]
let cols = [[ vars !! (x * size + y) | x <- [0..(size-1)]] | y <- [0..(size-1)]]
let sqrs = [[ vars !! ((sqrSize * sx + x) * size + y + sqrSize * sy) | x <- [0..(sqrSize-1)],
y <- [0..(sqrSize-1)]]
| sx <- [0..(sqrSize-1)],
sy <- [0..(sqrSize-1)]]
let numbers = map toTerm ([1..size] :: [Int]) -- possible numbers
initBoard board rows -- set constrains for initial clues
mapM_ distrincto rows -- each row contains distrinct numbers
mapM_ distrincto cols
mapM_ distrincto sqrs
mapM_ (domain numbers) vars
return rows
Solve Sudoku!
*Main> board1
[[4,2,0,0],
[0,0,0,0],
[0,0,0,0],
[0,0,0,0]]
*Main> take 1 $ run $ sudoku board1
[[[4, 2, 1, 3],
[1, 3, 2, 4],
[2, 4, 3, 1],
[3, 1, 4, 2]]]
*Main> board2
[[0,0,3, 0,2,0, 6,0,0],
[9,0,0, 3,0,5, 0,0,1],
[0,0,1, 8,0,6, 4,0,0],
[0,0,8, 1,0,2, 9,0,0],
[7,0,0, 0,0,0, 0,0,8],
[0,0,6, 7,0,8, 2,0,0],
[0,0,2, 6,0,9, 5,0,0],
[8,0,0, 2,0,3, 0,0,9],
[0,0,5, 0,1,0, 3,0,0]]
*Main> take 1 $ run $ sudoku board2
[[[4,8,3, 9,2,1, 6,5,7],
[9,6,7, 3,4,5, 8,2,1],
[2,5,1, 8,7,6, 4,9,3],
[5,4,8, 1,3,2, 9,7,6],
[7,2,9, 5,6,4, 1,3,8],
[1,3,6, 7,9,8, 2,4,5],
[3,7,2, 6,8,9, 5,1,4],
[8,1,4, 2,5,3, 7,6,9],
[6,9,5, 4,1,7, 3,8,2]]]
How many 4x4 Sudokus are there?
*Main> length $ run $ sudoku (replicate 4 (replicate 4 (0 :: Int)))
288