/cloudmesh.street

Primary LanguageShellApache License 2.0Apache-2.0

STOP SIGN DETECTION IN IMAGE AND VIDEO STREAMS USING SPARK

STEP 1: Clone or download cloudmesh.street repository to local machine

git clone https://github.com/cloudmesh/cloudmesh.street.git 

STEP 2.1: UPDATE THE USER PREFERENCES

After getting local copy of the git repository, Go to directory "./ansible" UPDATE THE FOLLOWING VARIABLES IN "user_vars.yaml"

---
###########################################################
#Variables for execution of complete package

#EDIT FOLLOWING DETAILS AS PER REQUIREMENT

##############CLOUDMESH SETTINGS###########################
#cloud: "chameleon" or "jetstream"
cloud: <TBD>
#username: "cloudmesh username as key_name"
username: <TBD>
############HADOOP CLUSTER SETTINGS########################
#Chameleon image_name: CC-Ubuntu14.04
#jetstream image_name: ubuntu-14.04-trusty-server-cloudimg
#flavor: m1.small, m1.medium, m1.large[preferred: m1.medium]
#addons: spark pig hive

image_name: <TBD>
count: <TBD>
flavor: <TBD>
addons: <TBD>

###########################################################

For e.g.:

---
############################################################
#Variables for execution of complete package

#EDIT FOLLOWING DETAILS AS PER REQUIREMENT

##############CLOUDMESH SETTINGS############################
#cloud: "chameleon" or "jetstream"
cloud: "chameleon"
#username: "cloudmesh username as key_name"
username: "rraghata"
############HADOOP CLUSTER SETTINGS#########################
#Chameleon image_name: CC-Ubuntu14.04
#jetstream image_name: ubuntu-14.04-trusty-server-cloudimg
#flavor: m1.small, m1.medium, m1.large [preferred: m1.medium]
#addons: spark pig hive


image_name: "CC-Ubuntu14.04"
count: "6"
flavor: "m1.medium"
addons: "spark"

############################################################

STEP 2.2: CHANGE WORKING DIRECTORY

Go to directory '/cloudmesh.street/code/scripts'

STEP 3: To install ansible, cloudmesh client for the first-time and run complete package run following script:

. run_all.sh

STEP 3: ANSIBLE PLAYBOOK EXECUTION BREAKDOWN

{Note: Skip 3.1 if already installed )

3.1 Run the script local_setup.sh for ansible and cloudmesh setup on local machine:
. setup.sh 

The above script when runs uses playbook--> ansible/local_setup.yaml Edit the cloudmesh.yaml file as per requirements [DETAILS GIVEN IN APPENDIX]

3.2 Run the script configure.sh for cloudmesh and cloud configuration:
. configure.sh

The above script when runs uses playbook--> ansible/cloud_config.yaml

3.3 Run the script deploy.sh to hadoop-spark cluster:
. deploy.sh

The above script when runs ,uses playbook--> ansible/hadoop_deploy.yaml

3.4 Run the script opencv_setup.sh for environment setup over cloud cluster for opencv and pyspark:
. opencv_setup.sh

The above script when runs ,uses playbook--> ansible/opencv_setup.yaml

3.5 Run the script sign_detection.sh to perform the sign detection analysis over cloud spark cluster:
. sign_detection.sh

The above script when runs ,uses playbook--> ansible/sign_detection.yaml

DEFAULT:

The images dataset as well as sample video are present in project directory [Details given in Appendix below], the default program performs sign detection on images.

To perform video analysis, Update the following file for last task:

cloudmesh.street/ansible/roles/analysis/tasks/main.yml

with

su - hadoop -c "spark-submit --master yarn --deploy-mode client --executor-memory 1g --driver-memory 2g --name signdetection --conf "spark.app.id=signdetection" /opencv_workspace/code/signdetectionbyspark.py /opencv_workspace/test_data/videos/ /opencv_workspace/output/"

NOTE: You might run in to memory issues if you use m1.small flavors for cluster creation, since the jobs need a minimum of medium flavor to run. For video, m1.large flavor is preferable for spark computing.

3.6 Run the script transfer.sh to get the output from remote vms(cloud) to local machine for visual confirmation:
. transfer.sh

The above script when runs ,uses playbook--> ansible/transfer_output_to_local.yaml

The output gets stored at "cloudmesh.street/ansible/output"

3.7 Run the script clean.sh to clean the environment:
. clean.sh

The above script when runs ,uses playbook--> env_clean.yaml It deletes all the VMS, undefines all the clusters, delete the output directory and deletes the stacks.

4. BENCHMARK
4.1 UPDATE the ./ansible/user_vars.yaml with preferences
4.2 GO TO Directory ./benchmark and run below script:
. benchmark.sh

The above script runs all the scripts[from ../code/scripts] with output in "./benchmark/benchmark_time" file for every script

Appendix:

A.1 Use of Cloudmesh_client

A.1.1 Edit ~/.cloudmesh/cloudmesh.yaml for following sections, edit <''>/ in the file correct credentials:
   profile:
	  firstname: <first name>
	  lastname: <last name>
	  email: <email id>
	  user: <chameleon/jetsream/other cloud username>
A.1.2 Change the entry of active cloud for the one you need,For e.g. chameleon cloud as shown below
active:
  - chameleon
clouds:
  ...
A.1.3 Edit the configuration for the active cloud below it from the list(kilo/chameleon/jestream/..), the entry with should be customized as per your credentials.

Chameleon Example:

credentials:
OS_PASSWORD: <enter your chameleon cloud password here>
OS_TENANT_NAME: CH-818664
OS_TENANT_ID: CH-818664
OS_PROJECT_NAME: CH-818664
OS_USERNAME: <username>
A.1.4 Also change default OS image and flavor as per requirement under cloud configuration:
default:
        flavor: m1.medium
        image: CC-Ubuntu14.04

A.2 DATA

A.2.1 Test Data has been provided in "ansible/roles/analysis/files/test_data/"

Following directories are included as sample test-data:

./images/ - 50 images dataset
./videos/ - 1 video stop_video_1.mp4 (2 sec) 

Note: Currently, code supports mp4 video files only.

A.3 CLASSIFIER

"STOP SIGN CLASSIFIER" has been provided in "ansible/roles/analysis/files/classifier/"

A.3.1 For testing,only one classifier-"STOP SIGN" has been used.

Multiple classifiers can be added to the directory if you have.