/chupa

Primary LanguagePython

Chupa (ICCV 2023, Oral)

teaser.png

This is the official code for the ICCV 2023 paper "Chupa: Carving 3D Clothed Humans from Skinned Shape Priors using 2D Diffusion Probabilistic Models", a 3D generation pipeline specialized on generating realistic human digital avatars.

News

  • [2023/08/20] Update text-based normal map generation checkpoint (1000 epochs).
  • [2023/12/18] Release training script.

Installation

Setup the environment using conda.

conda env create -f environment.yaml
conda activate chupa

Please check the installed pytorch has correct cuda version depending on your gpu.

Install pyremesh

python -m pip install --no-index --find-links ./src/normal_nds/ext/pyremesh pyremesh

Get SMPL related data

Following the instructions from ECON, you should register ICON website. Then, please run the script originally from ECON.

bash scripts/fetch_data.sh

Install frankmocap (Optional, for running Gradio)

mkdir third_party
cd third_party
git clone https://github.com/facebookresearch/frankmocap.git
cd frankmocap
sh scripts/install_frankmocap.sh
mv extra_data ../../  # for relative path problem

# create setup.py and install frankmocap
echo "from setuptools import find_packages, setup

setup(
    name='frankmocap',
    packages=find_packages('.'),
    package_dir={'': '.'},
)" > ./setup.py
pip install -e .

Training (23/12/18 updated)

We provide a sample training script using THuman2.0 dataset since we cannot share RenderPeople dataset due to license problem. You can follow the same process for the different human 3D scan dataset.

Render normal maps

Please checkout THuman2.0 for getting 3D scans and SMPL-X parameters of THuman 2.0 dataset. Then please organize the data folder as following.

./data/
├── thuman/
│   └── scans/
│       └── 0000/
│           └── 0000.obj
│           └── material0.mtl
│           └── material0.jpeg
│       └── 0001/
│       └── ...
│   └── smplx/
│       └── 0000.pkl
│       └── 0001.pkl
│       └── ...

Then, please running following script to render the normal maps of 3D scans and fitted SMPL-X meshes.

bash scripts/render_dataset.sh thuman train
bash scripts/render_dataset.sh thuman test

You will have the following tree.

./data/
├── thuman/
│   └── render/
│       └── train/
│           └── 0000
│               └── normal_F
│                   └── 000.png
│                   └── 010.png
│                   └── ...
│                   └── 350.png
│               └── normal_face_F
│                   └── ...
│               └── T_normal_F
│                   └── ...
│               └── T_normal_face_F
│                   └── ...
│       └── test/
│           └── 0473
│               └── ...

T_* indicates rendering of SMPL-X. normal_F and T_normal_F will be used for training body normal map diffusion model, and normal_face_F and T_normal_face_F will be used for training face normal map diffusion model.

Train a diffusion model with normal maps.

To train diffusion model with normal maps, please run the training code as below.

python src/ldm/main.py --base src/ldm/configs/thuman.yaml -t --device "${DEVICE IDs}"  # body diffusion
python src/ldm/main.py --base src/ldm/configs/thuman_face.yaml -t --device "${DEVICE IDs}"  # face diffusion

If you don't want to refine the mesh with zooming the face region, you may train only the body diffusion model. In this case, you should add chupa.use_closeup=false at the end when running the inference code.

The training result will be saved under src/ldm/logs. Please move the desired checkpoint and config file (configs/*-project.yaml) to checkpoints/normal_ldm folder. Please refer to the pretrained model instruction below for the directory structure.

Pretrained Model

At the moment, you can get the pretrained checkpoints by running the commands below. (23/12/18 the text model checkpoint was updated.) The checkpoints include autoencoder checkpoints from Latent Diffusion Model.

gdown https://drive.google.com/uc?id=1N1n9MWdnrNANFZvwaCRx7oyX8LPnIteu  # Models for dual normal map generation
unzip checkpoints.zip && rm checkpoints.zip
mkdir checkpoints/autoencoder/vq-f4-c3 && cd checkpoints/autoencoder/vq-f4-c3
wget https://ommer-lab.com/files/latent-diffusion/vq-f4.zip  # Autoencoder checkpoint from latent diffusion
unzip vq-f4.zip && rm vq-f4.zip 

Inference

Run Chupa on Gradio

You can upload an image of a person, then frankmocap will predict the SMPL-X parameter of it.
Based on the predicted parameter, Chupa pipeline will generate a 3D human avatar (takes a few minutes). (Note: Please ensure that the uploaded image contains one person.)

python scripts/gradio.py configs/gradio.yaml

gradio.png

Run Chupa on Terminal

Getting Data

You can get the test SMPL-X parameters for the test split of renderpeople dataset.

mkdir data && cd data
gdown https://drive.google.com/uc?id=1pWsSEUIoHF_4Zjn_2OczC9FKdLjChWDY
unzip renderpeople.zip && rm renderpeople.zip

We followed the data split of PIFuHD, and we release the SMPL-X parameters for test split at the moment. Please unzip it and follow the tree below.

./data/
├── renderpeople/
│   └── smplx/
│       └── rp_ben_posed_001.pkl
│       └── ...

You may checkout THuman2.0 for getting SMPL-X parameters for THuman2.0 dataset. We used 0473~0525 as test split.

Random generation

This will generate random 3D avatars based on SMPL-X parameters in data/renderpeople/smplx.

python scripts/chupa.py configs/random.yaml

Specify a subject in dataset

python scripts/chupa.py configs/random.yaml dataset dataset.subject=rp_ben_posed_001

Text-guided generation

This will generate 3D avatars based on the given prompt and SMPL-X parameters in data/renderpeople/smplx.

python chupa.py --config configs/text.yaml chupa.prompt=${Your Prompt}

Citation

If you use this code for your research, please cite our paper:

@InProceedings{kim2023chupa,
    author    = {Kim, Byungjun and Kwon, Patrick and Lee, Kwangho and Lee, Myunggi and Han, Sookwan and Kim, Daesik and Joo, Hanbyul},
    title     = {Chupa: Carving 3D Clothed Humans from Skinned Shape Priors using 2D Diffusion Probabilistic Models},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {15965-15976}
}

Thanks to