/cv_lab

Primary LanguageJupyter Notebook

CV lab

Consists of two tasks: stitching images and using CNN for planes and birds recognition.

Stitching images

See here.

Planes and birds recognition

For CNN used LeNet architecture.

Usage example:

Go to planes_birds directory:

cd planes_birds

Train and save model:

python lenet_planes_birds.py --save-model 1 --weights pb_rmsp.hdf5

Load already saved model:

python lenet_planes_birds.py --load-model 1 --weights pb_rmsp.hdf5

Use SGD optimizer (default one is RMSProp):

python lenet_planes_birds.py --save-model 1 --weights pb_sgd.hdf5 --sgd-optimizer 1 

Use Adadelta optimizer (default one is RMSProp):

python lenet_planes_birds.py --save-model 1 --weights pb_adadelta.hdf5 --adadelta-optimizer 1 

Train on gray images:

python lenet_planes_birds.py --save-model 1 --weights pb_sgd.hdf5 --gray-scale 1 

Results:

Accuracy RMSProp SGD Adadelta
Color image 70.50% 77.50% 76.30%
Gray image 56.90% 62.60% 57.00%