Course project of CSE463 Machine Learning, UNIST
This code was implemented and tested with below environment
python == 3.6.12
torch == 1.9.0
torchvision == 0.10.0
# ************************** CIFAR-10 *****************************
$ python train.py --model lenet --dataset cifar10 --n_train 20000
$ python train.py --model MLP --dataset cifar10 --n_train 20000
$ python train.py --model resnet --dataset cifar10 --n_train 20000
$ python train.py --model vgg --dataset cifar10 --n_train 20000
$ python train.py --model googlenet --dataset cifar10 --n_train 20000
# ************************** CIFAR-100 *****************************
$ python train.py --model lenet --dataset cifar100 --n_train 20000
$ python train.py --model MLP --dataset cifar100 --n_train 20000
$ python train.py --model resnet --dataset cifar100 --n_train 20000
$ python train.py --model vgg --dataset cifar100 --n_train 20000
$ python train.py --model googlenet --dataset cifar100 --n_train 20000
lr
: 0.005,epochs
: 100,batch_size
: 100,optimizer
: SGD,n_train
: 20000
Dataset | Model | Accuracy |
---|---|---|
CIFAR-10 | RF | 42.19 % |
CIFAR-10 | MLP | 44.3 % |
CIFAR-10 | LeNet | 64 % |
CIFAR-100 | RF | 16.7 % |
CIFAR-100 | MLP | 2.45 % |
CIFAR-100 | LeNet | 24 % |
- learning rate
epochs
: 100,batch_size
: 100,optimizer
: SGD,n_train
: 20000
Dataset | Learning Rate | Accuracy |
---|---|---|
CIFAR-10 | 0.1 | 25 % |
CIFAR-10 | 0.01 | 61 % |
CIFAR-10 | 0.005 | 64 % |
CIFAR-10 | 0.001 | 55 % |
-
CNN
lr
: 0.005,epochs
: 100,batch_size
: 100,optimizer
: SGD,n_train
: 20000
Dataset Model Accuracy CIFAR-10 LeNet-5 64 % CIFAR-10 GoogLeNet 74 % CIFAR-10 VGG19 78 % CIFAR-10 ResNet18 74 %
-
Dataset
lr
: 0.005,epochs
: 100,batch_size
: 100,optimizer
: SGD,n_train
: 20000
Dataset Model Accuracy CIFAR-10 LeNet-5 64 % CIFAR-100 LeNet-5 24 % Fasion MNIST LeNet-5 85 %
- number of training data
lr
: 0.005,epochs
: 100,batch_size
: 100,optimizer
: SGD
Dataset | Model | # of data | Accuracy |
---|---|---|---|
CIFAR-10 | LeNet-5 | 10000 | 56 % |
CIFAR-10 | LeNet-5 | 20000 | 64 % |
CIFAR-10 | LeNet-5 | 30000 | 66 % |
CIFAR-10 | LeNet-5 | 40000 | 66 % |
CIFAR-10 | LeNet-5 | 50000 | 69 % |