Predicting the radius of exoplanets based on its planetary and stellar parameters
A portuguese scientist who worked on nuclear physics in France with Marie Curie
Requirement: Python 3.7, Scikit-learn 0.20.3
pip install bem
or
git clone https://github.com/soleneulmer/bem.git
cd bem
python setup.py install
# Load exoplanet and solar system planets dataset
dataset = bem.load_dataset()
# Plot the dataset radius as a function of mass and equilibrium temperature
bem.plot_dataset(dataset)
# Build the random forest model and predict radius of the dataset
regr, y_test_predict, _, train_test_sets = bem.random_forest_regression(dataset)
# Predict a new radius with error
# my_planet = [planetary_mass (Me, Mj) or my_planet = [planetary_mass, planetary mass error,
# semi major axis (AU), semi major axis, semi major axis error,
# eccentricity, eccentricity, eccentricity error,
# stellar radius (Rsun), stellar radius, stellar radius error,
# stellar effective temperature (K), stellar effective temperature, teff error,
# stellar mass (Msun)] stellar mass (Msun), stellar mass error]
radius, my_pred_planet = bem.predict_radius(my_planet=np.array([[1.63,
0.034,
0.02,
0.337,
3505.0,
0.342]]),
my_name=np.array(['GJ 357 b']),
regr=regr,
jupiter_mass=False,
error_bar=False)
# If error_bar is True
# print('Radius: ', radius[0][0], '+-', radius[1])
# Load exoplanet and solar system planets dataset with uncertainties
dataset_errors = bem.load_dataset_errors()
# Compute the error bars for the test set planets
radii_test_output_error, _ = bem.computing_errorbars(regr,
dataset_errors,
train_test_sets)
# Plot the test set, true radius versus RF predicted radius
bem.plot_true_predicted(train_test_sets,
y_test_predict,
radii_test_output_error)
# Load the radial velocity dataset
dataset_rv = bem.load_dataset_RV()
# Predict the radius of the RV dataset
radii_RV_RF = regr.predict(dataset_rv)
# Plot the predictions of the RV dataset
bem.plot_dataset(dataset_rv, predicted_radii=radii_RV_RF, rv=True)
# Plot the learning curve
bem.plot_learning_curve(regr, dataset)
# Plot the validation curves
bem.plot_validation_curves(regr, dataset, name='features')
bem.plot_validation_curves(regr, dataset, name='tree')
bem.plot_validation_curves(regr, dataset, name='depth')
see their github
# Explain the RF predictions
# of the exoplanets from the test set
bem.plot_LIME_predictions(regr, dataset, train_test_sets)
# LIME explanation for your planet
# in this case GJ 357 b
bem.plot_LIME_predictions(regr, dataset, train_test_sets,
my_pred_planet=my_pred_planet,
my_true_radius=1.166)