/MMDW-P

Python Implementation of Max-Margin DeepWalk

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

MMDW-Python

Python Implementation of Max-Margin DeepWalk :- https://github.com/thunlp/MMDW
Paper :- "Max-Margin DeepWalk: Discriminative Learning of Network Representation" - IJCAI, 2016

Input:-

Input is organized as follows -
Datasets/
    |_ _ _ <Dataset-name>
                |_ _ _ <Dataset-name.mat>
                |_ _ _ <Stats.txt>
                |_ _ _ <Percentage of train-test split>
                                    |_ _ _ <Fold-No>
                                                |_ _ _ test_ids.npy
                                                |_ _ _ train_ids.npy
                                                |_ _ _ val_ids.npy

Usage:-

python main_algo.py --DATA_DIR cora --ALPHA_BIAS -2 --ALPHA 1.0 --LAMBDA 1.0 --L_COMPONENTS 16
    * ALPHA_BIAS : Alpha bias level for biased random walk
    * ALPHA : Similarity matrix factorization weight
    * LAMBDA : L2 regularization weight
    * L_COMPONENTS : Dimension of projected space

Output:-

* The generated node and label embeddings are saved in Emb/ folder as <emb_dataset_U/Q<Fold-No>>.npy.
* The node and label embeddings are of dimension (#Nodes x L_COMPONENTS) & (#Labels x L_COMPONENTS).
* The Node Classification evaluation results are stored in - Results/ folder