Semi-supervised clusterable node representation learning for homogeneous graphs.
Please see our initial work:~ Vijayan, Priyesh, et al. Semi-supervised learning for clusterable graph embeddings with NMF, Poster:~ NeuIPS 2018 Relational learning Workshop
Input is organized as follows -
Datasets/
|_ _ _ <Dataset-name>/
|_ _ _ <Dataset-name.mat>
|_ _ _ <Stats.txt>
|_ _ _ <Percentage of train-test splits>/
|_ _ _ <Fold-Number>/
|_ _ _ train_ids.npy
|_ _ _ test_ids.npy
|_ _ _ val_ids.npy
python main_algo.py --DATA_DIR cora --ALPHA 1 --BETA 0.1 --THETA 0.5 --K 20 --L_COMPONENTS 128
* ALPHA : Similarity matrix factorization weight
* BETA : Community Indicator matrix factorization weight
* THETA : Label matrix factorization weight
* K : Number of clusters
* L_COMPONENTS : Dimension of representation space
Please look at the get_ArgumentParser() function in main_algo.py to specify default values.
1. The generated node and label embeddings are saved in emb/ folder as Q & U .npy files respectively.
2. The node and label embeddings are of dimension (#Nodes x L_COMPONENTS) & (#Labels x L_COMPONENTS).
3. The Node Classification evaluation results are stored in Results folder.
This project is licensed under the MIT License - see the LICENSE.md file for details