Reproducing results in Conditional Sampling With Monotone GANs.
To start running the examples, clone the repository:
$ cd monotone-gans/
Run the following commands in the command line to install the necessary libraries and setup the conda envirement:
conda env create -f environment.yml
source activate mgan
Run the script below for creating the synthetic examples. Figures will be saved in the figs/
directory. Checkpoints of the network weights will be saved in the checkpoints/
directory.
$ python src/monotone-gan.py --example simple --experiment synthetic_4 --equation 4
$ python src/monotone-gan.py --example simple --experiment synthetic_5 --equation 5
$ python src/monotone-gan.py --example simple --experiment synthetic_6 --equation 6
In all the above cases, the command line input argument --phase inference
can be used to run the inference phase once there exists a saved checkpoint.
Run the command below to train the MNIST inpainting network. The training will take about 12 hours on a small GPU.
python src/monotone-gan.py --example mnist --experiment mnist_inpainting --wd 0.0 --batch_size 128 --max_epoch 300 --lr 0.0002
Figures will be saved in the figs/
directory. Checkpoints of the network weights will be saved in the checkpoints/
directory. The command line input argument --phase inference
can be used to run the inference phase once there exists a saved checkpoint.
Sonia Sargolzaei