In Stage 1, the ability to discriminate between target and bona fide non-target speakers can be learned using the VoxCeleb2
database which contains data collected from thousands of bona fide speakers. In this repository, we provide the pre-trained weights of the following models:
- ECAPA-TDNN: ecapa_tdnn.model (64MB)
- MFA_Conformer: mfa_conformer.model (89MB)
- SKA-TDNN: ska_tdnn.model (123MB)
Model | params | SASV-EER (%) | SV-EER (%) | SPF-EER (%) |
---|---|---|---|---|
ECAPA-TDNN |
16.7M | 20.66 | 0.74 | 27.30 |
MFA-Conformer |
20.9M | 20.22 | 0.41 | 26.52 |
SKA-TDNN |
29.4M | 16.74 | 0.38 | 22.38 |
You can evaluate the pre-trained weights using the following commands:
cd stage3
python trainSASVNet.py
--eval \
--test_list ./protocols/ASVspoof2019.LA.asv.eval.gi.trl.txt \
--test_path /path/to/dataset/ASVSpoof/ASVSpoof2019/LA/ASVspoof2019_LA_eval/wav \
--model ECAPA_TDNN \
--initial_model /path/to/weight/ecapa_tdnn.model
python trainSASVNet.py
--eval \
--test_list ./protocols/ASVspoof2019.LA.asv.eval.gi.trl.txt \
--test_path /path/to/dataset/ASVSpoof/ASVSpoof2019/LA/ASVspoof2019_LA_eval/wav \
--model MFA_Conformer \
--initial_model /path/to/weight/mfa_conformer.model
python trainSASVNet.py
--eval \
--test_list ./protocols/ASVspoof2019.LA.asv.eval.gi.trl.txt \
--test_path /path/to/dataset/ASVSpoof/ASVSpoof2019/LA/ASVspoof2019_LA_eval/wav \
--model SKA_TDNN \
--initial_model /path/to/weight/ska_tdnn.model
In Stage 2, we augment the model with the ability to discriminate between bona fide and spoofed inputs by using large-scale data generated through an oracle speech synthesis system, referred to as copy synthesis.
This repository has the copy-synthesis training using copy-synthesized data from VoxCeleb2 dev
or ASVspoof2019 LA train/train+dev
.
Even though training in Stages 1 and 2 learn to discriminate bona fide non-target and spoof non-target inputs, there is a remaining domain mismatch with the evaluation protocol. Furthermore, artefacts from the acoustic model have yet to be learned. Hence, in Stage 3, we fine-tune the model using in-domain bona fide and spoofed data contained within the ASVspoof2019 LA
dataset.
Stage1 | Stage2 | Stage3 | SASV-EER | SASV-EER | SASV-EER | SASV-EER | |
---|---|---|---|---|---|---|---|
ASV-based Pre-training |
Copy-synthesis Training |
In-domain Fine-tuning |
SKA-TDNN train |
SKA-TDNN train+dev |
MFA-Conformer train |
MFA-Conformer train+dev |
|
1 | - | - | ASVspoof2019 (bna+spf) |
9.55 | 5.94 | 11.47 | 7.67 |
2 | VoxCeleb2 (bna) |
- | - | - | 16.74 | - | 20.22 |
3 | VoxCeleb2 (bna) |
- | ASVspoof2019 (bna+spf) |
2.67 | 1.25 | 2.13 | 1.51 |
4 | - | VoxCeleb2 (bna+cs) |
- | - | 13.11 | - | 14.27 |
5 | - | VoxCeleb2 (bna+cs) |
ASVspoof2019 (bna+spf) |
2.47 | 1.93 | 1.91 | 1.35 |
6 | VoxCeleb2 (bna) |
VoxCeleb2 (bna+cs) |
- | - | 10.24 | - | 12.33 |
7 | VoxCeleb2 (bna) |
VoxCeleb2 (bna+cs) |
ASVspoof2019 (bna+spf) |
1.83 | 1.56 | 1.19 | 1.06 |
8 | - | ASVspoof2019 (bna+cs) |
- | 13.10 | 10.49 | 13.63 | 12.48 |
9 | - | ASVspoof2019 (bna+cs) |
ASVspoof2019 (bna+spf) |
9.57 | 6.17 | 13.46 | 10.11 |
10 | VoxCeleb2 (bna) |
ASVspoof2019 (bna+cs) |
- | 5.62 | 4.93 | 9.31 | 8.32 |
11 | VoxCeleb2 (bna) |
ASVspoof2019 (bna+cs) |
ASVspoof2019 (bna+spf) |
2.48 | 1.44 | 2.72 | 1.76 |
You can download each pre-trained weight from the above links:
If you utilize this repository, please cite the following paper,
@inproceedings{chung2020in,
title={In defence of metric learning for speaker recognition},
author={Chung, Joon Son and Huh, Jaesung and Mun, Seongkyu and Lee, Minjae and Heo, Hee Soo and Choe, Soyeon and Ham, Chiheon and Jung, Sunghwan and Lee, Bong-Jin and Han, Icksang},
booktitle={Proc. Interspeech},
year={2020}
}
@inproceedings{jung2022pushing,
title={Pushing the limits of raw waveform speaker recognition},
author={Jung, Jee-weon and Kim, You Jin and Heo, Hee-Soo and Lee, Bong-Jin and Kwon, Youngki and Chung, Joon Son},
booktitle={Proc. Interspeech},
year={2022}
}
@inproceedings{mun2022frequency,
title={Frequency and Multi-Scale Selective Kernel Attention for Speaker Verification},
author={Mun, Sung Hwan and Jung, Jee-weon and Han, Min Hyun and Kim, Nam Soo},
booktitle={Proc. IEEE SLT},
year={2022}
}