/SortAlgorithmTestProject

十大排序算法(Java实现代码+笔记)

Primary LanguageJava

(本工程是 IntelliJ Idea 2018的工程,参考部分文章,复习一遍各大排序算法,记录之)

十大排序算法

【参考文章】


笔记如下

0.一些概念

排序稳定 如果两个数相同,对他们进行的排序结果为他们的相对顺序不变。例如A={1,2,1,2,1}这里排序之后是A = {1,1,1,2,2} 稳定就是排序后第一个1就是排序前的第一个1,第二个1就是排序前第二个1,第三个1就是排序前的第三个1。同理2也是一样。不稳定就是他们的顺序与开始顺序不一致。

原地排序指不申请多余的空间进行的排序,就是在原来的排序数据中比较和交换的排序。例如快速排序,堆排序等都是原地排序,合并排序,计数排序等不是原地排序。

1.算法的分类

  • 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。

  • 线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。

总体上说,排序算法有两种设计思路,一种是基于比较,另一种不是基于比较。《算法导论》一书给出了这样一个证明:“基于比较的算法的最优时间复杂度是O(N lg N)”。对于基于比较的算法,有三种设计思路,分别为:插入排序,交换排序和选择排序。非基于比较的排序算法时间复杂度为O(lg N),之所以复杂度如此低,是因为它们一般对排序数据有特殊要求。如计数排序要求数据范围不会太大,基数排序要求数据可以分解成多个属性等。

分类 复杂度

2.算法的介绍

2.1 冒泡排序(Bubble Sort)

时间复杂度(平均): O(n2)

时间复杂度(最坏): O(n2)

时间复杂度(最好): O(n)

空间复杂度: O(1)

稳定性 :稳定

基本**

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是 重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

算法描述

比较相邻的元素。如果第一个比第二个大,就交换它们两个; 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; 针对所有的元素重复以上的步骤,除了最后一个; 重复步骤1~3,直到排序完成。

2.2 快速排序(Quick Sort)

时间复杂度(平均): O(nlog2n)

时间复杂度(最坏): O(n2)

时间复杂度(最好): O(nlog2n)

空间复杂度: O(nlog2n)

稳定性 :稳定

基本**

通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小, 则可分别对这两部分记录继续进行排序,以达到整个序列有序。

算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

从数列中挑出一个元素,称为 “基准”(pivot); 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。 在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作; 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

2.3 插入排序(Insertion Sort)

时间复杂度(平均): O(n2)

时间复杂度(最坏): O(n2)

时间复杂度(最好): O(n)

空间复杂度: O(1)

稳定性 :稳定

基本**

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。 它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

从第一个元素开始,该元素可以认为已经被排序; 取出下一个元素,在已经排序的元素序列中从后向前扫描; 如果该元素(已排序)大于新元素,将该元素移到下一位置; 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置; 将新元素插入到该位置后; 重复步骤2~5。

2.4 希尔排序(Shell Sort)

时间复杂度(平均): O(n1.3)

时间复杂度(最坏): O(n2)

时间复杂度(最好): O(n)

空间复杂度: O(1)

稳定性 :不稳定

基本**

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。 它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

算法描述

先将整个待排序的记录序列分割成为若干子序列,使得每个子序列的元素个数相对较少, 分别进行直接插入排序,然后对各个子序列分别进行直接插入排序,待整个待排序列“基本有序”后,最后在对所有元素进行一次直接插入排序。

具体算法描述:

选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; 按增量序列个数k,对序列进行k 趟排序; 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列, 分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2.5 选择排序(Selection Sort)

时间复杂度(平均): O(n2)

时间复杂度(最坏): O(n2)

时间复杂度(最好): O(n2)

空间复杂度: O(1)

稳定性 :不稳定

基本**

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置, 然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

初始状态:无序区为R[1..n],有序区为空; 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。 该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换, 使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区; n-1趟结束,数组有序化了。

2.6 堆排序(Heap Sort)

时间复杂度(平均): O(nlog2n)

时间复杂度(最坏): O(nlog2n)

时间复杂度(最好): O(nlog2n)

空间复杂度: O(1)

稳定性 :不稳定

基本**

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。 堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区; 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]; 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆, 然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

关键点

  • 1.建立大根堆
  • 2.调整堆

堆的构建

堆的排序1 堆的排序2 堆的排序3

2.7 归并排序(Merge Sort)

时间复杂度(平均): O(nlog2n)

时间复杂度(最坏): O(nlog2n)

时间复杂度(最好): O(nlog2n)

空间复杂度: O(n)

稳定性 :稳定

基本**

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

算法描述

把长度为n的输入序列分成两个长度为n/2的子序列; 对这两个子序列分别采用归并排序; 将两个排序好的子序列合并成一个最终的排序序列。

2.8 计数排序(Counting Sort)

时间复杂度(平均): O(n + k)

时间复杂度(最坏): O(n + k)

时间复杂度(最好): O(n + k)

空间复杂度: O(n + k)

稳定性 :稳定

基本**

计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法描述

找出待排序的数组中最大和最小的元素; 统计数组中每个值为i的元素出现的次数,存入数组C的第i项; 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加); 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法

2.9 桶排序(Bucket Sort)

时间复杂度(平均): O(n + k)

时间复杂度(最坏): O(n + k)

时间复杂度(最好): O(n + k)

空间复杂度: O(n + k)

稳定性 :稳定

基本**

计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法描述

找出待排序的数组中最大和最小的元素; 统计数组中每个值为i的元素出现的次数,存入数组C的第i项; 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加); 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法

2.10 基数排序(Radix Sort)

时间复杂度(平均): O(n k)

时间复杂度(最坏): O(n k)

时间复杂度(最好): O(n k)

空间复杂度: O(n + k)

稳定性 :稳定

基本**

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。 有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。 最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法描述

取得数组中的最大数,并取得位数; arr为原始数组,从最低位开始取每个位组成radix数组; 对radix进行计数排序(利用计数排序适用于小范围数的特点);