Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and Cordelia Schmid, ICCV 2021.
*Equal Contribution
Define os environment variables pointing to your checkpoint and dataset directory, put in your .bashrc
:
export DATASET=/path/to/dataset/dir
Install PyTorch 1.9 then pip install .
at the root of this repository.
To download ADE20K, use the following command:
python -m segm.scripts.prepare_ade20k $DATASET
We release models with a Vision Transformer backbone initialized from the improved ViT models.
Segmenter models with ViT backbone:
Name | mIoU (SS/MS) | # params | Resolution | FPS | Download | ||
---|---|---|---|---|---|---|---|
Seg-T-Mask/16 | 38.1 / 38.8 | 7M | 512x512 | 52.4 | model | config | log |
Seg-S-Mask/16 | 45.3 / 46.9 | 27M | 512x512 | 34.8 | model | config | log |
Seg-B-Mask/16 | 48.5 / 50.0 | 106M | 512x512 | 24.1 | model | config | log |
Seg-B/8 | 49.5 / 50.5 | 89M | 512x512 | 4.2 | model | config | log |
Seg-L-Mask/16 | 51.8 / 53.6 | 334M | 640x640 | - | model | config | log |
Segmenter models with DeiT backbone:
Name | mIoU (SS/MS) | # params | Resolution | FPS | Download | ||
---|---|---|---|---|---|---|---|
Seg-B†/16 | 47.1 / 48.1 | 87M | 512x512 | 27.3 | model | config | log |
Seg-B†-Mask/16 | 48.7 / 50.1 | 106M | 512x512 | 24.1 | model | config | log |
Name | mIoU (SS/MS) | # params | Resolution | FPS | Download | ||
---|---|---|---|---|---|---|---|
Seg-L-Mask/16 | 58.1 / 59.0 | 334M | 480x480 | - | model | config | log |
Download one checkpoint with its configuration in a common folder, for example seg_tiny_mask
.
You can generate segmentation maps from your own data with:
python -m segm.inference --model-path seg_tiny_mask/checkpoint.pth -i images/ -o segmaps/
To evaluate on ADE20K, run the command:
# single-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --singlescale
# multi-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --multiscale
Train Seg-T-Mask/16
on ADE20K on a single GPU:
python -m segm.train --log-dir seg_tiny_mask --dataset ade20k \
--backbone vit_tiny_patch16_384 --decoder mask_transformer
To train Seg-B-Mask/16
, simply set vit_base_patch16_384
as backbone and launch the above command using a minimum of 4 V100 GPUs (~12 minutes per epoch) and up to 8 V100 GPUs (~7 minutes per epoch). The code uses SLURM environment variables.
To plot the logs of your experiments, you can use
python -m segm.utils.logs logs.yml
with logs.yml
located in utils/
with the path to your experiments logs:
root: /path/to/checkpoints/
logs:
seg-t: seg_tiny_mask/log.txt
seg-b: seg_base_mask/log.txt
To visualize the attention maps for Seg-T-Mask/16
encoder layer 0 and patch (0, 21)
, you can use:
python -m segm.scripts.show_attn_map seg_tiny_mask/checkpoint.pth \
images/im0.jpg output_dir/ --layer-id 0 --x-patch 0 --y-patch 21 --enc
Different options are provided to select the generated attention maps:
--enc
or--dec
: Select encoder or decoder attention maps respectively.--patch
or--cls
:--patch
generates attention maps for the patch with coordinates(x_patch, y_patch)
.--cls
combined with--enc
generates attention maps for the CLS token of the encoder.--cls
combined with--dec
generates maps for each class embedding of the decoder.--x-patch
and--y-patch
: Coordinates of the patch to draw attention maps from. This flag is ignored when--cls
is used.--layer-id
: Select the layer for which the attention maps are generated.
For example, to generate attention maps for the decoder class embeddings, you can use:
python -m segm.scripts.show_attn_map seg_tiny_mask/checkpoint.pth \
images/im0.jpg output_dir/ --layer-id 0 --dec --cls
Attention maps for patch (0, 21)
in Seg-L-Mask/16
encoder layers 1, 4, 8, 12 and 16:
Attention maps for the class embeddings in Seg-L-Mask/16
decoder layer 0:
Zero shot video segmentation on DAVIS video dataset with Seg-B-Mask/16 model trained on ADE20K.
@article{strudel2021,
title={Segmenter: Transformer for Semantic Segmentation},
author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia},
journal={arXiv preprint arXiv:2105.05633},
year={2021}
}
The Vision Transformer code is based on timm library and the semantic segmentation training and evaluation pipeline is using mmsegmentation.