/visualglm_finetuning

Primary LanguagePythonApache License 2.0Apache-2.0

statement

    2024-04-22 简化
    2023-10-18 微调推理测试初步完成
    2023-10-17 initial visualglm_finetuning

install

  • pip install -U -r requirements.txt
  • 如果无法安装 , 可以切换官方源 pip install -i https://pypi.org/simple -U -r requirements.txt

weight

data sample

open_data https://github.com/ssbuild/open_data

单条数据示例

p prefix  optional
q question optional
a answer   must

{"id": 1, "paragraph": [{"q": "<img>../assets/demo.jpeg</img>\n图中的狗是什么品种?", "a": "图中是一只拉布拉多犬。"}]}

或者

{
    "id": 0,
    "conversations": [
      {
        "from": "user",
        "value": "<img>../assets/demo.jpeg</img>\n图中的狗是什么品种?"
      },
      {
        "from": "assistant",
        "value": "图中是一只拉布拉多犬。"
      }
    ]
}

infer

# infer.py 推理预训练模型
# infer_finetuning.py 推理微调模型
# infer_lora_finetuning.py 推理lora微调模型
 python infer.py
量化等级 最低 GPU 显存
FP16(无量化) 13 GB
INT8 10 GB
INT4 6 GB

inference

training

    # 制作数据
    cd scripts
    bash train_full.sh -m dataset 
    or
    bash train_lora.sh -m dataset 
    or
    bash train_ptv2.sh -m dataset 
    
    注: num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量
    dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0)
    
    # 全参数训练 
        bash train_full.sh -m train
        
    # lora adalora ia3 
        bash train_lora.sh -m train
        
    # ptv2
        bash train_ptv2.sh -m train

训练参数

训练参数

友情链接

纯粹而干净的代码

Reference

https://github.com/THUDM/VisualGLM-6B

Star History

Star History Chart