A packaged convolutional voice activity detector for noisy environments.
pip install https://github.com/sshh12/Conv-VAD/releases/download/v0.1.1/conv-vad-0.1.1.tar.gz
import conv_vad
vad = conv_vad.VAD()
# Audio frame is numpy array of 1 sec, 16k, single channel audio data.
score = vad.score_speech(audio_frame)
from scipy.io import wavfile
import numpy as np
import conv_vad
# Conv VAD currently only supports single channel audio at a 16k sample rate.
RATE = 16000
# Create a VAD object and load model
vad = conv_vad.VAD()
# Load wav as numpy array
audio = wavfile.read('test.wav')[1].astype(np.uint16)
for i in range(0, audio.shape[0] - RATE, RATE):
audio_frame = audio[i:i+RATE]
# For each audio frame (1 sec) compute the speech score.
# 1 = voice, 0 = no voice
score = vad.score_speech(audio_frame)
print('Time =', i // RATE)
print('Speech Score: ', score)
python model/label_data.py --wav_path path/to/audio.wav --data_path data
python model/train.py --data_path data --epochs 25