/reReg

Regression methods for recurrent event data

Primary LanguageHTML

reReg

Project Status: Active – The project has reached a stable, usable state and is being actively developed. minimal R version CRAN_Status_Badge packageversion AppVeyor Build Status Travis-CI Build Status Last-changedate

Regression models for recurrent event data

reReg implements a collection of regression models for recurrent event process and failure time. The package is still under active development.

Installation

You can install and load reReg from CRAN using

install.packages("reReg")
library(reReg)

You can install reReg from github with:

## install.packages("devtools")
devtools::install_github("stc04003/reReg", ref = "main")

Citation

Cite reReg with citation("reReg").

citation("reReg")
#> To cite reReg in publications use:
#> 
#>   Chiou SH, Xu G, Yan J, Huang C (2023). "Regression Modeling for
#>   Recurrent Events Possibly with an Informative Terminal Event Using R
#>   Package reReg." _Journal of Statistical Software_, *105*(5), 1-34.
#>   doi:10.18637/jss.v105.i05 <https://doi.org/10.18637/jss.v105.i05>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using {R} Package {reReg}},
#>     author = {Sy Han Chiou and Gongjun Xu and Jun Yan and Chiung-Yu Huang},
#>     journal = {Journal of Statistical Software},
#>     year = {2023},
#>     volume = {105},
#>     number = {5},
#>     pages = {1--34},
#>     doi = {10.18637/jss.v105.i05},
#>   }

Online documentation

Online document includes:

References:

Lin, D., Wei, L., Yang, I. and Ying, Z. (2000). Semiparametric Regression for the Mean and Rate Functions of Recurrent Events. Journal of the Royal Statistical Society: Series B (Methodological), 62: 711-730.

Wang, M.-C., Qin, J., and Chiang, C.-T. (2001). Analyzing Recurrent Event Data with Informative Censoring. Journal of the American Statistical Association 96(455): 1057-1065.

Ghosh, D. and D.Y. Lin (2002). Marginal Regression Models for Recurrent and Terminal Events. Statistica Sinica, 663-688.

Ghosh, D. and D.Y. Lin (2003). Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring. Biometrics, 59: 877-885.

Huang, C.-Y. and Wang, M.-C. (2004). Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data. Journal of the American Statistical Association 99(468), 1153-1165.

Xu, G., Chiou, S.H., Huang, C.-Y., Wang, M.-C. and Yan, J. (2017). Joint Scale-change Models for Recurrent Events and Failure Time. Journal of the American Statistical Association 112(518): 796-805.

Xu, G., Chiou, S.H., Yan, J., Marr, K., and Huang, C.-Y. (2020) Generalized Scale-Change Models for Recurrent Event Processes under Informative Censoring. Statistica Sinica 30, 1773–1795.

Huang, M.-Y. and Huang, C.Y. (2022) Improved semiparametric estimation of the proportional rate model with recurrent event data. Biometrics 79(3), 1686–1700.

Chiou, S.H., Xu, G., Yan, J. and Huang, C.-Y. (2022) Regression modeling for recurrent events possibly with an informative terminal event using R package reReg. Journal of Statistical Software 105, 1–34.