About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute
x - nπ/2 = r
.
npm install @stdlib/math-base-special-rempio2
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var rempio2 = require( '@stdlib/math-base-special-rempio2' );
Computes x - nπ/2 = r
.
var y = [ 0.0, 0.0 ];
var n = rempio2( 128.0, y );
// returns 81
var y1 = y[ 0 ];
// returns ~0.765
var y2 = y[ 1 ];
// returns ~3.618e-17
When x
is NaN
or infinite, the function returns 0
and sets the elements of y
to NaN
.
var y = [ 0.0, 0.0 ];
var n = rempio2( NaN, y );
// returns 0
var y1 = y[ 0 ];
// returns NaN
var y2 = y[ 1 ];
// returns NaN
y = [ 0.0, 0.0 ];
n = rempio2( Infinity, y );
// returns 0
y1 = y[ 0 ];
// returns NaN
y2 = y[ 1 ];
// returns NaN
- The function returns
n
and stores the remainderr
as two numbers iny
, such thaty[0]+y[1] = r
. - For input values larger than
2^20*π/2
in magnitude, the function only returns the last three binary digits ofn
and not the full result.
var linspace = require( '@stdlib/array-base-linspace' );
var rempio2 = require( '@stdlib/math-base-special-rempio2' );
var x = linspace( 0.0, 100.0, 100 );
var y = [ 0.0, 0.0 ];
var n;
var i;
for ( i = 0; i < x.length; i++ ) {
n = rempio2( x[ i ], y );
console.log( '%d - %dπ/2 = %d + %d', x[ i ], n, y[ 0 ], y[ 1 ] );
}
#include "stdlib/math/base/special/rempio2.h"
Computes x - nπ/2 = r
.
#include <stdint.h>
double rem1;
double rem2;
int32_t n = stdlib_base_rempio2( 4.0, &rem1, &rem2 );
The function accepts the following arguments:
- x:
[in] double
input value. - rem1:
[out] double*
destination for first remainder number. - rem2:
[out] double*
destination for second remainder number.
int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 );
- The function returns
n
and stores the remainderr
as two numbers inrem1
andrem2
, respectively, such thatrem1+rem2 = r
.
#include "stdlib/math/base/special/rempio2.h"
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
int main( void ) {
const double x[] = { 0.0, 1.0, 4.0, 128.0 };
double rem1;
double rem2;
int32_t n;
int i;
for ( i = 0; i < 4; i++ ) {
n = stdlib_base_rempio2( x[ i ], &rem1, &rem2 );
printf( "%lf - %"PRId32"π/2 = %lf + %lf\n", x[ i ], n, rem1, rem2 );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Copyright © 2016-2024. The Stdlib Authors.