/bike-rental

Data exploratory analysis and machine learning on a bike sharing dataset.

Primary LanguageJupyter Notebook

bike-rental

Data exploratory analysis and machine learning on a bike sharing dataset.

DATA USED IN THIS PROJECT DONT BELONG TO ME. I AM JUST BORROWING IT TO TRAIN MY MACHINE LEARNING SKILLS.READ BELOW!

DATA WAS DOWNLOADED FROM https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

====================================== Bike Sharing Dataset

Hadi Fanaee-T

Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto INESC Porto, Campus da FEUP Rua Dr. Roberto Frias, 378 4200 - 465 Porto, Portugal

===================================== Background

Bike sharing systems are new generation of traditional bike rentals where whole process from membership, rental and return back has become automatic. Through these systems, user is able to easily rent a bike from a particular position and return back at another position. Currently, there are about over 500 bike-sharing programs around the world which is composed of over 500 thousands bicycles. Today, there exists great interest in these systems due to their important role in traffic, environmental and health issues.

Apart from interesting real world applications of bike sharing systems, the characteristics of data being generated by these systems make them attractive for the research. Opposed to other transport services such as bus or subway, the duration of travel, departure and arrival position is explicitly recorded in these systems. This feature turns bike sharing system into a virtual sensor network that can be used for sensing mobility in the city. Hence, it is expected that most of important events in the city could be detected via monitoring these data.

===================================== License

Use of this dataset in publications must be cited to the following publication:

[1] Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background knowledge", Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg, doi:10.1007/s13748-013-0040-3.

@article{ year={2013}, issn={2192-6352}, journal={Progress in Artificial Intelligence}, doi={10.1007/s13748-013-0040-3}, title={Event labeling combining ensemble detectors and background knowledge}, url={http://dx.doi.org/10.1007/s13748-013-0040-3}, publisher={Springer Berlin Heidelberg}, keywords={Event labeling; Event detection; Ensemble learning; Background knowledge}, author={Fanaee-T, Hadi and Gama, Joao}, pages={1-15} }

===================================== Contact

For further information about this dataset please contact Hadi Fanaee-T (hadi.fanaee@fe.up.pt)