/tensorflow-2.0-generative-models

Implementation of different GANs with the Tensorflow Keras API

Primary LanguageJupyter Notebook

Generative-Networks

This repository contains jupyter notebooks with generative models implemented in tensorflow 2.0.0a0.

Getting Started

  • without Docker: Install tensorflow 2.0.0a0 with GPU support:
    pip install tensorflow-gpu==2.0.0-alpha0 
    https://github.com/steven-mi/Tensorflow-2.0-Generative-Models.git
  • without Docker: Pull from the official tensorflow dockerhub account the tensorflow:2.0.0a0 container, clone the repository and run the notebooks.
    nvidia-docker run -it --rm tensorflow/tensorflow:2.0.0a0-gpu-py3-jupyter bash
    https://github.com/steven-mi/Tensorflow-2.0-Generative-Models.git
    1.Note: If you don't have a GPU then just drop the gpu tag. I don't recommend runnig a generative model on a CPU. 2.Note: You need CUDA >= 10.0 in order to run tensorflow 2.0

Implemented Autoencoder

Implemented GANs

Sources

TODO

  • Documentation of VAE
  • Documentation of Simple GAN
  • Documentation of Deep Convolutional GAN
  • Documenation of Wasserstein GAN
  • Documentation of Wasserstein GAN GP
  • Documentation of Condiional GAN
  • Implementation of other GANs