/DLP-project

Deep Learning and Practice Final Project

Primary LanguagePython

DLP-project

💻 Deep Learning and Practice Final Project
🏹 Stock Prediction using Transformer

Dataset

Download data from dataset and unzip it into directory "archive".

$ kaggle datasets download -d jacksoncrow/stock-market-dataset

Reference

Reference is implemented in Tensorflow.
Stock predictions with state-of-the-art Transformer and Time Embeddings

Arguments

Argument Description Option Default
'-e', '--epochs' Number of epochs int 10
'-w', '--warmup' Number of epochs for warmup int 2
'-l', '--learning_rate' Learning rate float 0.001
'-b', '--batch_size' Batch size int 64
'-s', '--seq_len' Sequence length (consecutive days) int 128
'-ne', '--num_encoder' Number of transformer encoder in the network int 3
'-a', '--attn_dim' Dimension of single attention output int 96
'-nh', '--num_heads' Number of heads for multi-attention int 12
'-d', '--dropout_rate' Dropout rate float 0.3
'-hs', '--hidden_size' Hidden size between the linear layers in the encoder int 256
'-loss', '--loss_function' Loss function 'l1' or 'l2' 'l2'
'-i', '--inference_only' Inference only or not 'store_true' False
'-r', '--root_dir' Directory containing the downloaded data str 'archive'
'-v', '--verbosity' Verbosity level 0-2 0