/deeplearningdemo

CV deeplearning demo

Primary LanguageJavaScript

what is it

Collect all kinds of deep learning projects, quickly build demo. Use the minimum code to Reproducing function

It can be divided into CPU version and GPU version. Some project will adopt GPU version which the model can only run on GPU or the model with poor experience on CPU

  • Small model use cpu inference

  • Large model uses docker container inference,and destroy the container after completion

[中文说明] [deploy] [video tutorial]

sample

openface

detecron2

face 3D reconsturction

demo list

name inference ?pu model source
face detection memory cpu mtcnn -
key point container cpu openface github
face alignment container cpu face-alignment -
segmentation container gpu detecron2 github
segmentation container cpu maskrcnn github
pose estimation container gpu densepose github
makeup container gpu face-makeup.PyTorch github
attribute predict memory cpu attribute-predict -
face verification memory cpu arcface github
face 3D reconsturction container cpu prnet github
super resolution container cpu srgan github
AImakeup memory cpu beautygan github
attribute manipulate container gpu stylegan github
attribute manipulate container gpu glow github
face interpolation container gpu glow github
face interpolation container gpu stylegan github
image inpaint - web - nvidia-playground
domain transfer - web guagan nvidia-playground
domain transfer - web gannimal nvidia-playground
tf-js - web - github

Install

  • main image
docker pull zzz9958123/demo_server
  • project image
docker pull zzz9958123/glow
docker pull zzz9958123/detectron2
docker pull zzz9958123/densepose
docker pull zzz9958123/openface
docker pull zzz9958123/densepose
docker pull zzz9958123/maskrcnn-benchmark
docker pull zzz9958123/prnet
docker pull zzz9958123/haircolour
docker pull zzz9958123/face_alignment
docker pull zzz9958123/srgan
  • download model from [GD] [baidu]

  • Place your domain certificate in the SSL folder to make HTTPS work.This is not a necessary step, unless you want the webcam to work

Run

docker-compose up

go check http(s)://0.0.0.0:5000

rest-api

All projects support rest API methods
URL is the project address,Post requests to submit form, input {Base64: Base64 picture}, and return JSON calculation result. Refer to response JSON of demo page for structure

example

import requests
import base64
res = requests.post("https://pc.zzz9958123.com:5000/attribute_predict",data={"base64":b"data:img/png;base64,"+base64.b64encode(open("abc.png","rb").read())}).content
print(res)