A fast Golang Redis client that does auto pipelining and supports server-assisted client-side caching.
- Auto pipelining for non-blocking redis commands
- Server-assisted client-side caching
- Generic Object Mapping with client-side caching
- Cache-Aside pattern with client-side caching
- Distributed Locks with client side caching
- Helpers for writing tests with rueidis mock
- OpenTelemetry integration
- Hooks and other integrations
- Go-redis like API adapter by @418Coffee
- Pub/Sub, Sharded Pub/Sub, Streams
- Redis Cluster, Sentinel, RedisJSON, RedisBloom, RediSearch, RedisTimeseries, etc.
- Probabilistic Data Structures without Redis Stack
package main
import (
"context"
"github.com/redis/rueidis"
)
func main() {
client, err := rueidis.NewClient(rueidis.ClientOption{InitAddress: []string{"127.0.0.1:6379"}})
if err != nil {
panic(err)
}
defer client.Close()
ctx := context.Background()
// SET key val NX
err = client.Do(ctx, client.B().Set().Key("key").Value("val").Nx().Build()).Error()
// HGETALL hm
hm, err := client.Do(ctx, client.B().Hgetall().Key("hm").Build()).AsStrMap()
}
Checkout more examples: Command Response Cheatsheet
client.B()
is the builder entrypoint to construct a redis command:
Recorded by @FZambia Improving Centrifugo Redis Engine throughput and allocation efficiency with Rueidis Go library
Once a command is built, use either client.Do()
or client.DoMulti()
to send it to redis.
You ❗️SHOULD NOT❗️ reuse the command to another client.Do()
or client.DoMulti()
call because it has been recycled to the underlying sync.Pool
by default.
To reuse a command, use Pin()
after Build()
and it will prevent the command being recycled.
All concurrent non-blocking redis commands (such as GET
, SET
) are automatically pipelined,
which reduces the overall round trips and system calls, and gets higher throughput. You can easily get the benefit
of pipelining technique by just calling client.Do()
from multiple goroutines concurrently.
For example:
func BenchmarkPipelining(b *testing.B, client rueidis.Client) {
// the below client.Do() operations will be issued from
// multiple goroutines and thus will be pipelined automatically.
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
client.Do(context.Background(), client.B().Get().Key("k").Build()).ToString()
}
})
}
Comparing to go-redis, Rueidis has higher throughput across 1, 8, and 64 parallelism settings.
It is even able to achieve ~14x throughput over go-redis in a local benchmark of Macbook Pro 16" M1 Pro 2021. (see parallelism(64)-key(16)-value(64)-10
)
Benchmark source code: https://github.com/rueian/rueidis-benchmark
A benchmark result performed on two GCP n2-highcpu-2 machines also shows that rueidis can achieve higher throughput with lower latencies: redis#93
Besides auto pipelining, you can also pipeline commands manually with DoMulti()
:
cmds := make(rueidis.Commands, 0, 10)
for i := 0; i < 10; i++ {
cmds = append(cmds, client.B().Set().Key("key").Value("value").Build())
}
for _, resp := range client.DoMulti(ctx, cmds...) {
if err := resp.Error(); err != nil {
panic(err)
}
}
The opt-in mode of server-assisted client-side caching is enabled by default, and can be used by calling DoCache()
or DoMultiCache()
with client-side TTLs specified.
client.DoCache(ctx, client.B().Hmget().Key("mk").Field("1", "2").Cache(), time.Minute).ToArray()
client.DoMultiCache(ctx,
rueidis.CT(client.B().Get().Key("k1").Cache(), 1*time.Minute),
rueidis.CT(client.B().Get().Key("k2").Cache(), 2*time.Minute))
Cached responses will be invalidated either when being notified by redis servers or when their client side TTLs are reached.
Server-assisted client-side caching can dramatically boost latencies and throughput just like having a redis replica right inside your application. For example:
Benchmark source code: https://github.com/rueian/rueidis-benchmark
Use CacheTTL()
to check the remaining client side TTL in seconds:
client.DoCache(ctx, client.B().Get().Key("k1").Cache(), time.Minute).CacheTTL() == 60
Use IsCacheHit()
to verify that if the response came from the client side memory:
client.DoCache(ctx, client.B().Get().Key("k1").Cache(), time.Minute).IsCacheHit() == true
If the OpenTelemetry is enabled by the rueidisotel.NewClient(option)
, then there are also two metrics instrumented:
- rueidis_do_cache_miss
- rueidis_do_cache_hits
rueidis.MGetCache
and rueidis.JsonMGetCache
are handy helpers fetching multiple keys across different slots through the client side caching.
They will first group keys by slot to build MGET
or JSON.MGET
commands respectively and then send requests with only cache missed keys to redis nodes.
Although the default is opt-in mode, you can use broadcast mode by specifying your prefixes in ClientOption.ClientTrackingOptions
:
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"127.0.0.1:6379"},
ClientTrackingOptions: []string{"PREFIX", "prefix1:", "PREFIX", "prefix2:", "BCAST"},
})
if err != nil {
panic(err)
}
client.DoCache(ctx, client.B().Get().Key("prefix1:1").Cache(), time.Minute).IsCacheHit() == false
client.DoCache(ctx, client.B().Get().Key("prefix1:1").Cache(), time.Minute).IsCacheHit() == true
Please make sure that commands passed to DoCache()
and DoMultiCache()
are covered by your prefixes.
Otherwise, their client-side cache will not be invalidated by redis.
Cache-Aside is a widely used caching strategy. rueidisaside can help you cache data into your client-side cache backed by Redis. For example:
client, err := rueidisaside.NewClient(rueidisaside.ClientOption{
ClientOption: rueidis.ClientOption{InitAddress: []string{"127.0.0.1:6379"}},
})
if err != nil {
panic(err)
}
val, err := client.Get(context.Background(), time.Minute, "mykey", func(ctx context.Context, key string) (val string, err error) {
if err = db.QueryRowContext(ctx, "SELECT val FROM mytab WHERE id = ?", key).Scan(&val); err == sql.ErrNoRows {
val = "_nil_" // cache nil to avoid penetration.
err = nil // clear err in case of sql.ErrNoRows.
}
return
})
// ...
Please refer to the full example at rueidisaside.
Some Redis provider doesn't support client-side caching, ex. Google Cloud Memorystore.
You can disable client-side caching by setting ClientOption.DisableCache
to true
.
This will also fall back client.DoCache()
and client.DoMultiCache()
to client.Do()
and client.DoMulti()
.
client.Do()
, client.DoMulti()
, client.DoCache()
and client.DoMultiCache()
can return early if the context is canceled or the deadline is reached.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
client.Do(ctx, client.B().Set().Key("key").Value("val").Nx().Build()).Error() == context.DeadlineExceeded
Please note that though operations can return early, the command is likely sent already.
To receive messages from channels, client.Receive()
should be used. It supports SUBSCRIBE
, PSUBSCRIBE
and Redis 7.0's SSUBSCRIBE
:
err = client.Receive(context.Background(), client.B().Subscribe().Channel("ch1", "ch2").Build(), func(msg rueidis.PubSubMessage) {
// handle the msg
})
The provided handler will be called with received message.
It is important to note that client.Receive()
will keep blocking until returning a value in the following cases:
- return
nil
when received any unsubscribe/punsubscribe message related to the providedsubscribe
command. - return
rueidis.ErrClosing
when the client is closed manually. - return
ctx.Err()
when thectx
is done. - return non-nil
err
when the providedsubscribe
command failed.
While the client.Receive()
call is blocking, the Client
is still able to accept other concurrent requests,
and they are sharing the same tcp connection. If your message handler may take some time to complete, it is recommended
to use the client.Receive()
inside a client.Dedicated()
for not blocking other concurrent requests.
The client.Receive()
requires users to provide a subscription command in advance.
There is an alternative Dedicatedclient.SetPubSubHooks()
allows users to subscribe/unsubscribe channels later.
c, cancel := client.Dedicate()
defer cancel()
wait := c.SetPubSubHooks(rueidis.PubSubHooks{
OnMessage: func(m rueidis.PubSubMessage) {
// Handle message. This callback will be called sequentially, but in another goroutine.
}
})
c.Do(ctx, c.B().Subscribe().Channel("ch").Build())
err := <-wait // disconnected with err
If the hooks are not nil, the above wait
channel is guaranteed to be close when the hooks will not be called anymore,
and produce at most one error describing the reason. Users can use this channel to detect disconnection.
To do a CAS Transaction (WATCH
+ MULTI
+ EXEC
), a dedicated connection should be used because there should be no
unintentional write commands between WATCH
and EXEC
. Otherwise, the EXEC
may not fail as expected.
client.Dedicated(func(c rueidis.DedicatedClient) error {
// watch keys first
c.Do(ctx, c.B().Watch().Key("k1", "k2").Build())
// perform read here
c.Do(ctx, c.B().Mget().Key("k1", "k2").Build())
// perform write with MULTI EXEC
c.DoMulti(
ctx,
c.B().Multi().Build(),
c.B().Set().Key("k1").Value("1").Build(),
c.B().Set().Key("k2").Value("2").Build(),
c.B().Exec().Build(),
)
return nil
})
Or use Dedicate()
and invoke cancel()
when finished to put the connection back to the pool.
c, cancel := client.Dedicate()
defer cancel()
c.Do(ctx, c.B().Watch().Key("k1", "k2").Build())
// do the rest CAS operations with the `client` who occupying a connection
However, occupying a connection is not good in terms of throughput. It is better to use Lua script to perform optimistic locking instead.
The NewLuaScript
or NewLuaScriptReadOnly
will create a script which is safe for concurrent usage.
When calling the script.Exec
, it will try sending EVALSHA
first and fallback to EVAL
if the server returns NOSCRIPT
.
script := rueidis.NewLuaScript("return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}")
// the script.Exec is safe for concurrent call
list, err := script.Exec(ctx, client, []string{"k1", "k2"}, []string{"a1", "a2"}).ToArray()
client.DoStream()
and client.DoMultiStream()
can be used to send large redis responses to an io.Writer
directly without allocating them in the memory. They work by first sending commands to a dedicated connection acquired from a pool,
then directly copying the response values to the given io.Writer
, and finally recycling the connection.
s := client.DoMultiStream(ctx, client.B().Get().Key("a{slot1}").Build(), client.B().Get().Key("b{slot1}").Build())
for s.HasNext() {
n, err := s.WriteTo(io.Discard)
if rueidis.IsRedisNil(err) {
// ...
}
}
Note that these two methods will occupy connections until all responses are written to the given io.Writer
.
This can take a long time and hurt performance. Use the normal Do()
and DoMulti()
instead unless you want to avoid allocating memory for large redis response.
Also note that these two methods only work with string
, integer
, and float
redis responses. And DoMultiStream
currently
does not support pipelining keys across multiple slots when connecting to a redis cluster.
Each underlying connection in rueidis allocates a ring buffer for pipelining.
Its size is controlled by the ClientOption.RingScaleEachConn
and the default value is 10 which results into each ring of size 2^10.
If you have many rueidis connections, you may find that they occupy quite amount of memory.
In that case, you may consider reducing ClientOption.RingScaleEachConn
to 8 or 9 at the cost of potential throughput degradation.
You may also consider setting the value of ClientOption.PipelineMultiplex
to -1
, which will let rueidis use only 1 connection for pipelining to each redis node.
You can create a new redis client using NewClient
and provide several options.
// Connect to a single redis node:
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"127.0.0.1:6379"},
})
// Connect to a redis cluster
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"127.0.0.1:7001", "127.0.0.1:7002", "127.0.0.1:7003"},
ShuffleInit: true,
})
// Connect to a redis cluster and use replicas for read operations
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"127.0.0.1:7001", "127.0.0.1:7002", "127.0.0.1:7003"},
SendToReplicas: func(cmd rueidis.Completed) bool {
return cmd.IsReadOnly()
},
})
// Connect to sentinels
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"127.0.0.1:26379", "127.0.0.1:26380", "127.0.0.1:26381"},
Sentinel: rueidis.SentinelOption{
MasterSet: "my_master",
},
})
You can use ParseURL
or MustParseURL
to construct a ClientOption
.
The provided url must be started with either redis://
, rediss://
or unix://
.
Currently supported url parameters are db
, dial_timeout
, write_timeout
, addr
, protocol
, client_cache
, client_name
, max_retries
, and master_set
.
// connect to a redis cluster
client, err = rueidis.NewClient(rueidis.MustParseURL("redis://127.0.0.1:7001?addr=127.0.0.1:7002&addr=127.0.0.1:7003"))
// connect to a redis node
client, err = rueidis.NewClient(rueidis.MustParseURL("redis://127.0.0.1:6379/0"))
// connect to a redis sentinel
client, err = rueidis.NewClient(rueidis.MustParseURL("redis://127.0.0.1:26379/0?master_set=my_master"))
If you want to construct commands that are absent from the command builder, you can use client.B().Arbitrary()
:
// This will result into [ANY CMD k1 k2 a1 a2]
client.B().Arbitrary("ANY", "CMD").Keys("k1", "k2").Args("a1", "a2").Build()
The command builder treats all the parameters as Redis strings, which are binary safe. This means that users can store []byte
directly into Redis without conversion. And the rueidis.BinaryString
helper can convert []byte
to string
without copy. For example:
client.B().Set().Key("b").Value(rueidis.BinaryString([]byte{...})).Build()
Treating all the parameters as Redis strings also means that the command builder doesn't do any quoting, conversion automatically for users.
When working with RedisJSON, users frequently need to prepare JSON string in Redis string. And rueidis.JSON
can help:
client.B().JsonSet().Key("j").Path("$.myStrField").Value(rueidis.JSON("str")).Build()
// equivalent to
client.B().JsonSet().Key("j").Path("$.myStrField").Value(`"str"`).Build()
When working with vector similarity search, users can use rueidis.VectorString32
and rueidis.VectorString64
to build queries:
cmd := client.B().FtSearch().Index("idx").Query("*=>[KNN 5 @vec $V]").
Params().Nargs(2).NameValue().NameValue("V", rueidis.VectorString64([]float64{...})).
Dialect(2).Build()
n, resp, err := client.Do(ctx, cmd).AsFtSearch()
While the command builder is developer friendly, the response parser is a little unfriendly. Developers must know what type of Redis response will be returned from the server beforehand and which parser they should use. Otherwise, it panics.
It is hard to remember what type of message will be returned and which parsing to used. So, here are some common examples:
// GET
client.Do(ctx, client.B().Get().Key("k").Build()).ToString()
client.Do(ctx, client.B().Get().Key("k").Build()).AsInt64()
// MGET
client.Do(ctx, client.B().Mget().Key("k1", "k2").Build()).ToArray()
// SET
client.Do(ctx, client.B().Set().Key("k").Value("v").Build()).Error()
// INCR
client.Do(ctx, client.B().Incr().Key("k").Build()).AsInt64()
// HGET
client.Do(ctx, client.B().Hget().Key("k").Field("f").Build()).ToString()
// HMGET
client.Do(ctx, client.B().Hmget().Key("h").Field("a", "b").Build()).ToArray()
// HGETALL
client.Do(ctx, client.B().Hgetall().Key("h").Build()).AsStrMap()
// ZRANGE
client.Do(ctx, client.B().Zrange().Key("k").Min("1").Max("2").Build()).AsStrSlice()
// ZRANK
client.Do(ctx, client.B().Zrank().Key("k").Member("m").Build()).AsInt64()
// ZSCORE
client.Do(ctx, client.B().Zscore().Key("k").Member("m").Build()).AsFloat64()
// ZRANGE
client.Do(ctx, client.B().Zrange().Key("k").Min("0").Max("-1").Build()).AsStrSlice()
client.Do(ctx, client.B().Zrange().Key("k").Min("0").Max("-1").Withscores().Build()).AsZScores()
// ZPOPMIN
client.Do(ctx, client.B().Zpopmin().Key("k").Build()).AsZScore()
client.Do(ctx, client.B().Zpopmin().Key("myzset").Count(2).Build()).AsZScores()
// SCARD
client.Do(ctx, client.B().Scard().Key("k").Build()).AsInt64()
// SMEMBERS
client.Do(ctx, client.B().Smembers().Key("k").Build()).AsStrSlice()
// LINDEX
client.Do(ctx, client.B().Lindex().Key("k").Index(0).Build()).ToString()
// LPOP
client.Do(ctx, client.B().Lpop().Key("k").Build()).ToString()
client.Do(ctx, client.B().Lpop().Key("k").Count(2).Build()).AsStrSlice()
// SCAN
client.Do(ctx, client.B().Scan().Cursor(0).Build()).AsScanEntry()
// FT.SEARCH
client.Do(ctx, client.B().FtSearch().Index("idx").Query("@f:v").Build()).AsFtSearch()
// GEOSEARCH
client.Do(ctx, client.B().Geosearch().Key("k").Fromlonlat(1, 1).Bybox(1).Height(1).Km().Build()).AsGeosearch()
DecodeSliceOfJSON is useful when you would like to scan the results of an array into a slice of a specific struct.
type User struct {
Name string `json:"name"`
}
// Set some values
if err = client.Do(ctx, client.B().Set().Key("user1").Value(`{"name": "name1"}`).Build()).Error(); err != nil {
return err
}
if err = client.Do(ctx, client.B().Set().Key("user2").Value(`{"name": "name2"}`).Build()).Error(); err != nil {
return err
}
// Scan MGET results into []*User
var users []*User // or []User is also scannable
if err := rueidis.DecodeSliceOfJSON(client.Do(ctx, client.B().Mget().Key("user1", "user2").Build()), &users); err != nil {
return err
}
for _, user := range users {
fmt.Printf("%+v\n", user)
}
/*
&{name:name1}
&{name:name2}
*/
Please make sure that all values in the result have same JSON structure.
// Set a pure string value
if err = client.Do(ctx, client.B().Set().Key("user1").Value("userName1").Build()).Error(); err != nil {
return err
}
// Bad
users := make([]*User, 0)
if err := rueidis.DecodeSliceOfJSON(client.Do(ctx, client.B().Mget().Key("user1").Build()), &users); err != nil {
return err
}
// -> Error: invalid character 'u' looking for beginning of value
// in this case, use client.Do(ctx, client.B().Mget().Key("user1").Build()).AsStrSlice()
Contributions are welcome, including issues, pull requests, and discussions. Contributions mean a lot to us and help us improve this library and the community!
Command builders are generated based on the definitions in ./hack/cmds by running:
go generate
Please use the ./dockertest.sh script for running test cases locally. And please try your best to have 100% test coverage on code changes.