Easy and Efficient Object Detector
EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on provide two key feature about Object Detection:
- Efficient: we will focus on training VERY HIGH ACCURARY single-shot detection model, and model compression (quantization/sparsity) will be well addressed.
- Easy: easy to use, easy to add new features(backbone/head/neck), easy to deploy.
- Large-Scale Dataset Training Detail
- Equalized Focal Loss for Dense Long-Tailed Object Detection EFL
- Improve-YOLOX YOLOX-RET
- Quantization Aware Training(QAT) interface based on MQBench.
The master branch works with PyTorch 1.8.1. Due to the pytorch version, it can not well support the 30 series graphics card hardware.
pip install -r requirments
Some example scripts are supported in scripts/.
Export eod into ROOT and PYTHONPATH
ROOT=../../
export ROOT=$ROOT
export PYTHONPATH=$ROOT:$PYTHONPATH
Step1: edit meta_file and image_dir of image_reader:
dataset:
type: coco # dataset type
kwargs:
source: train
meta_file: coco/annotations/instances_train2017.json
image_reader:
type: fs_opencv
kwargs:
image_dir: coco/train2017
color_mode: BGR
Step2: train
python -m eod train --config configs/det/yolox/yolox_tiny.yaml --nm 1 --ng 8 --launch pytorch 2>&1 | tee log.train
- --config: yamls in configs/
- --nm: machine number
- --ng: gpu number for each machine
- --launch: slurm or pytorch
Step3: fp16, add fp16 setting into runtime config
runtime:
fp16: True
Step1: edit config of evaluating dataset
Step2: test
python -m eod train -e --config configs/det/yolox/yolox_tiny.yaml --nm 1 --ng 1 --launch pytorch 2>&1 | tee log.test
Step1: add visualizer config in yaml
inference:
visualizer:
type: plt
kwargs:
class_names: ['__background__', 'person'] # class names
thresh: 0.5
Step2: inference
python -m eod inference --config configs/det/yolox/yolox_tiny.yaml --ckpt ckpt_tiny.pth -i imgs -v vis_dir
- --ckpt: model for inferencing
- -i: images directory or single image
- -v: directory saving visualization results
EOD supports mpirun mode to launch task, MPI needs to be installed firstly
# download mpich
wget https://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz # other versions: https://www.mpich.org/static/downloads/
tar -zxvf mpich-3.2.1.tar.gz
cd mpich-3.2.1
./configure --prefix=/usr/local/mpich-3.2.1
make && make install
Launch task
mpirun -np 8 python -m eod train --config configs/det/yolox/yolox_tiny.yaml --launch mpi 2>&1 | tee log.train
- Add mpirun -np x; x indicates number of processes
- Mpirun is convenient to debug with pdb
- --launch: mpi
Thanks to all past contributors, especially opcoder,