/streamback

Primary LanguagePythonApache License 2.0Apache-2.0

2-way streams for your microservices

What is a stream with feedbacks?


With Streamback you can implement the producer-consumer model but with a twist. The consumer can send feedback messages back to the producer via a feedback stream, making it work more like an RPC than the one way stream Kafka is intended to be used as.

How it works?


Streamback implements two different streams, the main stream and the feedback stream.

  • Main stream: This is the kafka stream that the producer sends messages to the consumer.
  • Feedback stream: This is the stream that the consumer sends messages to the producer. Redis is used for this stream for its
  • simplicity and speed.

Why not just use the conventional one way streams?


Streamback does not stop you from just using the main stream and not sending feedback messages, this way it is behaving just like a Kafka producer-consumer. Streamback just gives you the option to do so if you need it in order to make more simple the communication between your microservices.

Installation


pip install streamback

Examples

One way stream consumer-producer

Consumer

from streamback import Streamback

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)


@streamback.listen("test_hello")
def test_hello(context, message):
    print("received: {value}".format(value=message.value))


streamback.start()

Producer

from streamback import Streamback

streamback = Streamback(
    "example_producer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)

streamback.send("test_hello", {"something": "Hello world!"})

2-way RPC like communication

Consumer

from streamback import Streamback

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)


@streamback.listen("test_hello_stream")
def test_hello_stream(context, message):
    print("received: {value}".format(value=message.value))
    message.respond("Hello from the consumer!")


streamback.start()

Producer

from streamback import Streamback

streamback = Streamback(
    "example_producer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)

message = streamback.send("test_hello_stream", {"something": "Hello world!"}).read(timeout=10)
print(message)

2-way RPC like communication with steaming feedback messages

Consumer

from streamback import Streamback, KafkaStream, RedisStream
import time

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)


@streamback.listen("test_hello_stream")
def test_hello_stream(context, message):
    print("received: {value}".format(value=message.value))
    for i in range(10):
        message.respond("Hello #{i} from the consumer!".format(i=i))
        time.sleep(2)


streamback.start()

Producer

from streamback import Streamback

streamback = Streamback(
    "example_producer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)

for message in streamback.send("test_hello_stream", {"something": "Hello world!"}).stream():
    print(message)

## OR

stream = streamback.send("test_hello_stream", {"something": "Hello world!"})

message1 = stream.read()
message2 = stream.read()
message3 = stream.read()

Concurrent consumers

Streamback supports concurrent consumers via process forking, when you call streamback.start(), the process forks for each of the consumers you have defined. On each consumer you can define the number of processes you want to run, by default each listener creates one process but you can change this to fine tune the performance of your consumers.

from streamback import Streamback

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)

@streamback.listen("test_hello") ## adds this listener to the pool of listeners
def test_hello(context, message):
    print("received: {value}".format(value=message.value))


@streamback.listen("test_hello", concurrency=2)  ## spawns 2 dedicated processes for this listener
def test_hello(context, message):
    print("received: {value}".format(value=message.value))


@streamback.listen("test_hello_2", concurrency=20)  ## spawns 20 dedicated processes for this listener
def test_hello_2(context, message):
    print("received: {value}".format(value=message.value))


streamback.start()

Scheduling of messages(cron like)

You can schedule messages to be sent on periodic intervals

@streamback.listen("check_server_status")
def hello(context, message):
  print("received: {value}".format(value=message.value))


streamback.schedule(
  "check_the_server_status",
  when="*/30 * * * * *",  ## this will execute every 30 seconds
  then="check_server_status",
  args={
    "something1": "hello there",
  },
  description="test the schedule blabla bla"
)

streamback.start()

Consumer input mapping to objects

For a more type oriented approach you can map the input of the consumer to a class.

class TestInput(object):
    def __init__(self, arg1, arg2):
        self.arg1 = arg1
        self.arg2 = arg2


@streamback.listen("test_input")
def test_input(context, message):
    input = message.map(TestInput)
    print(input.arg1)
    print(input.arg2)
    message.respond({
        "arg1": input.arg1,
        "arg2": input.arg2
    })

Producer feedback mapping to objects

In a similar way you can map the feedback of the producer to a class.

class TestResponse(object):
    def __init__(self, arg1, arg2):
        self.arg1 = arg1
        self.arg2 = arg2


response = streamback.send("test_input", {"arg1": "Hello world!", "arg2": "Hello world!"}).read("main_app",
                                                                                                map=TestResponse)
print(response.arg1)
print(response.arg2)

Input injection

Instead of having to deconstruct the message.value inside the consumer's logic, you can pass to the consumer only the arguments of the message.value that you want to use.

@streamback.listen("test_input", input=["arg1", "arg2"])
def test_input(arg1, arg2):
    pass


streamback.send("test_input", {"arg1": "Hello world!", "arg2": "Hello world!"})

Class based consumers

@streamback.listen("new_log")
class LogsConsumer(Listener):
    logs = []

    def consume(self, context, message):
        self.logs.append(message.value)
        if len(self.logs) > 100:
            self.flush_logs()

    def flush_logs(self):
        database_commit(self.logs)

Router

The StreambackRouter helps with spliting the consumer logic into different files, it is not required to use it but it helps

some_consumers.py

from streamback import Router

router = Router()


@router.listen("test_hello")
def test_hello(context, message):
    print("received: {value}".format(value=message.value))

my_consumer_app.py

from streamback import Streamback

from some_consumers import router as some_consumers_router

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379"
)

streamback.include_router(some_consumers_router)

streamback.start()

Handling consume exceptions and other callbacks

from streamback import Streamback, Callback


class StreambackCallbacks(Callback):
    def on_consume_begin(self, streamback, listener, context, message):
        print("on_consume_begin:", message)

    def on_consume_end(self, streamback, listener, context, message, exception=None):
        print("on_consume_end:", message, exception)

    def on_consume_exception(self, streamback, listener, exception, context, message):
        print("on_consume_exception:", type(exception))

    def on_fork(self):
        print("on_fork")


streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379",
).add_callback(StreambackCallbacks())

Extensions

By using the callbacks mechanism new extensions can be created to inject custom logic into the lifecycle of Streamback.

Stats extension

The ListenerStats extension can be used to log the memory usage of each listener.

from streamback import Streamback, ListenerStats

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379",
).add_callback(ListenerStats(interval=10))

The above will log the memory usage of the listeners every 10 seconds

AutoRestart extension

from streamback import Streamback, AutoRestart

streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379",
).add_callback(AutoRestart(max_seconds=10, max_memory_mb=100))

The above will restart the child processes every 10 seconds or when it reaches 100mb of rss memory usage.

Custom extensions

You can extend the ListenerStats class to add custom logic like reporting the memory usage to a monitoring service.

from streamback import Streamback, ListenerStats


class MyListenerStats(ListenerStats):
    def on_stats(self, stats):
        print(stats)


streamback = Streamback(
    "example_consumer_app",
    streams="main=kafka://kafka:9092&feedback=redis://redis:6379",
).add_callback(MyListenerStats(interval=10))

Why python 2.7 compatible?

Streamback has been created for usage in car.gr's systems which has some legacy python 2.7 services. We are are planing to move Streamback to python >3.7 in some later version but for now the python 2.7 support was crucial and thus the async/await support was sacrificed. Currently it is used in production to handle millions of messages per day.

SASL Authentication

streamback = Streamback(
    "example_producer_app",
    streams="main=kafka://user@1234:kafka:9092&feedback=redis://redis:6379"
)