Explore correlations and sequences in qualitative and quantitative content analysis.
The package is in pre alpha state. Use with care. Numbers might be hurt.
library(devtools)
install_github("strohne/npmi", build_vignettes = TRUE)
# Packages
library(tidyverse)
library(npmi)
# Load example data
data <- read_csv2(system.file("extdata", "threads.csv", package = "npmi"))
# Cooccurence
pairs_coo <- data %>%
select(item=id,feature,weight) %>%
count_pairs()
# Resample npmi for cooccurrence
pairs_coo <- data %>%
select(item=id,feature,weight) %>%
get_cooccurrence()
# Sequences
pairs_seq <- data %>%
rename(item=id,item_parent=parent_id) %>%
add_previous_item() %>%
count_sequences()
# Resample npmi for sequences
pairs_seq <- data %>%
rename(item=id,item_parent=parent_id) %>%
add_previous_item() %>%
get_sequences()
# Plot absolute numbers
pairs_seq %>%
rename(value=n) %>%
matrixmap()
# Plot probabilities
pairs_seq %>%
rename(value=p) %>%
matrixmap()
# Plot rnpmi
pairs_seq %>%
rename(value=npmi) %>%
matrixmap()
# Plot network
pairs_seq %>%
rename(value=npmi) %>%
network()
See the vignettes for further examples (either browse the vignettes folder or open vignettes from the package help). Vignettes are not polished yet.
Resampling can be parallelized, just call:
library(future)
plan(multisession)
Jünger, Jakob (2021). Unseen correlations: On the identification of rare events and sequences in online comment threads. Annual Conference of the Methods Division of the German Communication Association (DGPuK), 2021, Virtual Vienna.