TF Lite Android App
本程序实现功能
1,摄像头数据实时推流到服务器,在本程序中,服务器设置的是边缘设备(android系统开发板)使用前需要配置sys
2,获取推流时的byte[]数组 转成图片后 利用自训练的Tflite分类模型和opencv算法,综合分析出当前货车的载物类别和行驶行为
Building from Source with Bazel
-
Follow the Bazel steps for the TF Demo App:
-
Install Bazel and Android Prerequisites. It's easiest with Android Studio.
- You'll need at least SDK version 23.
- Bazel requires Android Build Tools
26.0.1
or higher. - You also need to install the Android Support Repository, available
through Android Studio under
Android SDK Manager -> SDK Tools -> Android Support Repository
.
-
Edit your
WORKSPACE
to add SDK and NDK targets.- Make sure the
api_level
inWORKSPACE
is set to an SDK version that you have installed. - By default, Android Studio will install the SDK to
~/Android/Sdk
and the NDK to~/Android/Sdk/ndk-bundle
.
- Make sure the
-
Build the app with Bazel. The demo needs C++11:
bazel build -c opt --cxxopt='--std=c++11' \
//tensorflow/contrib/lite/java/demo/app/src/main:TfLiteCameraDemo
- Install the demo on a debug-enabled device:
adb install bazel-bin/tensorflow/contrib/lite/java/demo/app/src/main/TfLiteCameraDemo.apk