/empirical_thermal_conductivity

Estimate the thermal conductivity using empirical models

Primary LanguagePythonMIT LicenseMIT

Empirical estimation of thermal conductivity

Estimate the thermal conductivity using empirical models including the Clarke’s, Cahill–Pohl’s, and Slack's models.

The basic equations

  • Clarke model1,2,3

κmin = 0.87 kB(NA m ρ /M)2/3 (E/ρ)1/2,

or

κmin = 0.87 kBavg)-2/3 (E/ρ)1/2,

where kB is Boltzmann constant, M and m are the molecular mass and the number of the atoms per molecule, respectively, E is Young’s modulus, ρ is the density and NA is Avogadro’s number.

Ωavg = M/(mρNA) ,

Ωavg is the average volume per atom.

The Eq.(3) in Ref. 3 had messed the definition of M and Mavg, and the correct way is to use M, rather the Mavg (the mean atomic mass).

  • Cahill–Pohl model4,5,6

κmin = kB/2.48 (n/Ω)2/3 (vl+2vt),

or

κmin = 1/2 (π/6)1/3kB (n/Ω)2/3 (vl+2vt),

where kB is Boltzmann constant, Ω and n are the volume of unit cell and the number of the atoms in the unit cell, respectively. vl and vt and the longitudinal and transverse sound velocities, respectively, which are estimated from the bulk modulus B and shear modulus G as follows:

vl= ((B+4G/3)/ρ)1/2,

vt=(G/ρ)1/2.

  • Slack model7

κ = 3.1 ∗ 10-6 Mavg ΘD3δ /(γ2n2/3T),

where Mavg is the mean atomic mass (in amu), ΘD is the Debye temperature (in K), n and the number of the atoms in the unit cell, δ3 is the volume per atom (in Å3), and γ is the average Grüneisen parameter. The Debye temperature8 and Grüneisen parameter can be evaluated from the sound velocities, which can be measured experimentally, or can be obtained by the theoretically-calculated elastic modulus.

ΘD = h/kB (3n/(4πΩ))1/3va,

where h and kB are Planck and Boltzmann constants, respectively, n is the number of atoms in the unit cell, Ω is the cell volume, and va is the average sound wave velocity. The va is given in terms of vl and vt as

va = [(1/3)(1/vl3+2/vt3)]-1/3.

The Grüneisen parameter γ is calculated from the relation proposed by Belomestnykh9:

γ = [9-12(vt/vl)2]/[2+4(vt/vl)2],

which takes into account the contribution of acoustic sound velocities only.

  • Mixed model10

    κa = a1 ∗ M

Usage

Input parameters

  1. natoms_list: number of atoms for each species in the primitive unit cell. For example, Al2Fe3Si3 in the primitive unit cell of its triclinic structure, the number of Fe, Al, and Si are 6, 4, and 6, respectively. So define: natoms_list = [6, 4, 6].
  2. atomic_weight_list: the atomic weight (in amu) for each atom species. For example: the atomic weights of Fe, Al, and Si are 55.845, 26.982, and 28.086, respectively. So define: atomic_weight_list = [55.845, 26.982, 28.086].
  3. vol: the volume of primitive unit cell (in in Å3). For example, the volume of the primitive unit cell of Al2Fe3Si3 is 196.489731295 Å3. So define: vol = 196.489731295.
  4. K: bulk modulus (in GPa). For example, K = 173.121
  5. G: shear modulus (in GPa). For example, G = 173.121
  6. E: Young's modulus (in GPa). For example, E= 286.239.
  7. t: temperature (in K). t= 679.334852747

Call function

  • kappa_Clarke=thermal_cond_clarke(natoms_list, atomic_weight_list, vol, E)

  • kappa_Chill=thermal_cond_cahill(natoms_list, atomic_weight_list, vol, K, G)

  • kappa_Slack=thermal_cond_slack(natoms_list, atomic_weight_list, vol, K, G, t)

  • kappa_mixed=thermal_cond_latt_mixed(natoms_list, atomic_weight_list, vol, K)

print(kappa_Clarke)

print(kappa_Chill)

print(kappa_Slack)

print(kappa_mixed)

All the calculated thermal conductivities are given in the unit of W m-1K-1. Meanwhile, the other physics quantities such as Debye temperature, Grüneisen parameter, and sound velocities are also printed out.

We have used the Slack model to estimate of Al2Fe3Si3. If you are interested in it, please refer to our paper:

  • Zhufeng Hou, Yoshiki Takagiwa, Yoshikazu Shinohara, Yibin Xu, and Koji Tsuda, Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material, ACS Appl. Mater. Interfaces 11, 11545–11554(2019). DOI: 10.1021/acsami.9b02381.

References

  1. D. R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163–164, 67–74(2003). DOI: 10.1016/S0257-8972(02)00593-5.
  2. D. R. Clarke and S. R. Phillpot, Thermal barrier coating materials, Mater. Today 8, 22–29 (2005). DOI: 10.1016/S1369-7021(05)70934-2.
  3. A. M. Limarga, S. Shian, R. M. Leckie, C. G. Levi, and D. R. Clarke, Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system, J. Eur. Ceram. Soc., 34, 3085-3094(2014). DOI: 10.1016/j.jeurceramsoc.2014.03.013.
  4. D. G. Cahill and R. O. Pohl, Lattice vibrations and heat transport in crystals and glasses, Annu. Rev. Phys. Chem., 39, 93–121(1988). DOI: 10.1146/annurev.pc.39.100188.000521.
  5. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop and L. Shi, Appl. Phys. Rev., 1, 011305(2014). DOI: 10.1063/1.4832615.
  6. D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46, 6131(1992). DOI: 10.1103/PhysRevB.46.6131.
  7. G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34, 321–335 (1973). DOI: 10.1016/0022-3697(73)90092-9.
  8. P. Debye, Zur theorie der spezifischen wärmen, Annalen der Physik 344, 789–839 (1912). DOI: 10.1002/andp.19123441404.
  9. V. N. Belomestnykh, The acoustical Grüneisen constants of solids, Tech. Phys. Lett. 30, 91–93 (2004). DOI: 10.1134/1.1666949.
  10. Toberer, E. S.; Zevalkink, A.; Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843-15852(2011). DOI: 10.1039/c1jm11754h.