This part is the official repository for the paper - Best Practices in Active Learning for Semantic Segmentation
- PASCAL-VOC (Augmented train set: 10582 images)
- Cityscapes
- A2D2
- Pool-0f
- Pool-5f
- Pool-11f
- Pool-21f
- Pool-Aug
- Random Sampling
- Entropy-based Sampling
- CoreSet Approach
- EquAL Sampling
- Random Sampling SSL
- Entropy SSL
- CoreSet SSL
- EquAL SSL
Sample script for PASCAL-VOC
python run.py --random-image --config ./configs/datasets/pascal_voc.yaml
python run.py --entropy-image --config ./configs/datasets/pascal_voc.yaml
python run.py --coreset --config ./configs/datasets/pascal_voc.yaml
Sample script for A2D2
python run.py --random-image --config ./configs/datasets/a2d2.yaml
You can download the weights for the pretrained weights (Wide-ResNet-38) for initializing the encoder backbone here
- CIFAR-10
- CIFAR-100
- Random Sampling
- Entropy Sampling
- CoreSet
- Learning Loss
- Ensemble Entropy
- Ensemble Variation Ratio (QBC)
@InProceedings{ALSS_2024_GCPR,
author = {Mittal, Sudhanshu and Niemeijer, Joshua and Sch{\"a}fer, J{\"o}rg P. and Brox, Thomas},
title = {Best Practices in Active Learning for Semantic Segmentation},
booktitle = {Proceedings of the DAGM German Conference on Pattern Recognition},
year = {2023},
}