/chatglm.cpp

C++ implementation of ChatGLM-6B & ChatGLM2-6B

Primary LanguageC++MIT LicenseMIT

ChatGLM.cpp

CMake License: MIT

C++ implementation of ChatGLM-6B and ChatGLM2-6B for real-time chatting on your MacBook.

demo

Features

  • Pure C++ implementation based on ggml, working in the same way as llama.cpp.
  • Accelerated memory-efficient CPU inference with int4/int8 quantization, optimized KV cache and parallel computing.
  • Streaming generation with typewriter effect.
  • Python binding, web demo, and more possibilities.

Getting Started

Preparation

Clone the ChatGLM.cpp repository into your local machine:

git clone --recursive https://github.com/li-plus/chatglm.cpp.git && cd chatglm.cpp

If you forgot the --recursive flag when cloning the repository, run the following command in the chatglm.cpp folder:

git submodule update --init --recursive

Quantize Model

Use convert.py to transform ChatGLM-6B or ChatGLM2-6B into quantized GGML format. For example, to convert the fp16 base model to q4_0 (quantized int4) GGML model, run:

# For ChatGLM-6B
python3 convert.py -i THUDM/chatglm-6b -t q4_0 -o chatglm-ggml.bin
# For ChatGLM2-6B
python3 convert.py -i THUDM/chatglm2-6b -t q4_0 -o chatglm2-ggml.bin

For LoRA model, specify -l <lora_model_name_or_path> flag to merge your LoRA weights into the base model.

Build & Run

Compile the project using CMake:

cmake -B build
cmake --build build -j

Now you may chat with the quantized ChatGLM-6B model by running:

./build/bin/main -m chatglm-ggml.bin -p 你好                            # ChatGLM-6B
# 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
./build/bin/main -m chatglm2-ggml.bin -p 你好 --top_p 0.8 --temp 0.8    # ChatGLM2-6B
# 你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。

To run the model in interactive mode, add the -i flag. For example:

./build/bin/main -m chatglm-ggml.bin -i

In interactive mode, your chat history will serve as the context for the next-round conversation.

Run ./build/bin/main -h to explore more options!

Using BLAS

BLAS library can be integrated to further accelerate matrix multiplication. However, in some cases, using BLAS may cause performance degradation. Whether to turn on BLAS should depend on the benchmarking result.

Accelerate Framework

Accelerate Framework is automatically enabled on macOS. To disable it, add the CMake flag -DGGML_NO_ACCELERATE=ON.

OpenBLAS

OpenBLAS provides acceleration on CPU. Add the CMake flag -DGGML_OPENBLAS=ON to enable it.

cmake -B build -DGGML_OPENBLAS=ON
cmake --build build -j

cuBLAS

cuBLAS uses NVIDIA GPU to accelerate BLAS. Add the CMake flag -DGGML_CUBLAS=ON to enable it.

cmake -B build -DGGML_CUBLAS=ON
cmake --build build -j

Note that the current GGML CUDA implementation is really slow. The community is making efforts to optimize it.

Python Binding

To install the Python binding from source, run:

# install from the latest source hosted on GitHub
pip install git+https://github.com/li-plus/chatglm.cpp.git@main
# or install from your local source
pip install .

Run the Python example to chat with the quantized model:

python3 cli_chat.py -m chatglm-ggml.bin -i

You may also launch a web demo to chat in your browser:

python3 web_demo.py -m chatglm-ggml.bin

For ChatGLM2, change the model path to chatglm2-ggml.bin and everything works fine.

web_demo

Performance

Measured on a Linux server with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz using 16 threads.

ChatGLM-6B:

Q4_0 Q8_0 F16 F32
ms/token 74 114 189 357
file size 3.3GB 6.2GB 12GB 23GB
mem usage 4.0GB 6.9GB 13GB 24GB

ChatGLM2-6B:

Q4_0 Q8_0 F16 F32
ms/token 64 106 189 372
file size 3.3GB 6.2GB 12GB 24GB
mem usage 3.4GB 6.2GB 12GB 23GB

Development

  • To perform unit tests, add the CMake flag -DCHATGLM_ENABLE_TESTING=ON, recompile, and run ./build/bin/chatglm_test. For benchmark only, run ./build/bin/chatglm_test --gtest_filter=ChatGLM.benchmark.
  • To format the code, run cmake --build build --target lint. You should have clang-format, black and isort pre-installed.
  • To check performance issue, add the CMake flag -DGGML_PERF=ON. It will show timing for each graph operation when running the model.

Acknowledgements