/CRNet

Primary LanguagePythonOtherNOASSERTION

CRNet

Color-Retention Network

Dependencies

  • python 3.6.8
  • torch 1.3.0
  • tqdm 4.36.1
  • numpy 1.17.3
  • pillow 8.4.0
  • torchvision 0.4.1
  • scikit-image 0.17.2
  • tensorboardX 1.9
  • opencv-python 4.1.1.26

Datasets

Usage

Prepare dataset:

Please ensure that the data organization matches the code format.

Train:

python train.py --data_source /path/to/dataset --trial trial --lambda_perc 0.1 --PGBFP

Test:

python test.py --data_source /path/to/dataset --trial trial --model_name your_model_name --PGBFP

PSNR&SSIM

import cv2
from skimage.metrics import peak_signal_noise_ratio, structural_similarity

img1 = cv2.imread('img path1')
img2 = cv2.imread('img path2')
psnr = peak_signal_noise_ratio(img1, img2)
ssim = structural_similarity(img1, img2, multichannel=True, gaussian_weights=True, use_sample_covariance=False)

New Metric: Color-Sensitive Error (CSE)

Usage (CSE.py):


  import cv2
  from CSE import *
     
  img1 = cv2.imread('img path1')
  img2 = cv2.imread('img path2')
  cse = CSE(img1, img2)
  

Note: the format of image should be BGR, not RGB!