/NTIRE23_ISR_LVGroup_HFUT

Image Shadow Removal @ntire-challenge (Team LVGroup_HFUT)

Primary LanguagePython

NTIRE Challenge 2023 Team LVGroup_HFUT

This repository is the official NTIRE Challenge 2023 implementation of Team LVGroup_HFUT in Image Shadow Removal.

The restoration results of the tesing images and pretrained model can be downloaded from Google Drive.

Usage

Single image inference

cd your/script/path

python infer.py --data_source your/dataset/path --model_path ../pretrained/epoch_0090.pth --save_image --experiment your-experiment-name

Train

cd your/script/path

python train.py --data_source your/dataset/path --experiment your-experiment

Dataset format

The format of the dataset should meet the following code in datasets.py:

img_paths_train = sorted(glob.glob(data_source + '/train' + '/input' + '/*.*'))

gt_paths_train = sorted(glob.glob(data_source + '/train' + '/gt' + '/*.*'))

or

self.img_paths = sorted(glob.glob(data_source + '/test' + '/input' + '/*.*'))

data_source is given by the command line.

Path to saving results

when training and validating: the default path is '../results/your-experiment'

when testing: the default path is '../outputs/your-experiment/test'

when inferring: the default path is '../outputs/your-experiment/infer'