Created to learn Graph Neural Networks
- https://github.com/huggingface/transformers
- https://github.com/dmlc/dgl
- https://github.com/microsoft/DeepSpeed
- https://github.com/fastai/fastai
- https://github.com/Lightning-AI/lightning
- https://github.com/pyg-team/pytorch_geometric
- https://github.com/deepchem/deepchem
- https://github.com/dmlc/dgl/tree/master/examples/pytorch Have good research papers with implementation
- https://github.com/hwchase17/langchain
- https://github.com/bi-graph/Emgraph
- https://github.com/BUPT-GAMMA/HGAT/
- https://github.com/BUPT-GAMMA/OpenHGNN
- https://docs.dgl.ai/tutorials/models/index.html
- https://github.com/langchain-ai
- https://github.com/mindsdb/mindsdb
- https://github.com/BUPT-GAMMA
- https://github.com/open-mmlab
- https://github.com/orgs/UKPLab/repositories
- https://github.com/aymericdamien/TopDeepLearning
- https://github.com/bharathgs/Awesome-pytorch-list
- https://github.com/DeepGraphLearning/LiteratureDL4Graph
- https://github.com/GRAND-Lab/Awesome-Graph-Neural-Networks
- https://github.com/phlippe/uvadlc_notebooks/tree/master/docs/tutorial_notebooks
- https://docs.dgl.ai/en/0.9.x/tutorials/models/1_gnn/1_gcn.html -- DGL paper list
LinmeiHU
https://crossminds.ai/search/?keyword=graph&sort=date&filter=
https://github.com/mims-harvard/graphml-tutorials
https://github.com/sum-coderepo/Graph-Machine-Learning/tree/main/Graph-Machine-Learning-%20PacktPublishing
https://github.com/Atcold/pytorch-Deep-Learning ----- https://atcold.github.io/pytorch-Deep-Learning/ -- Educational
https://github.com/deepmind/educational Deepmind educational
https://github.com/AntonioLonga/AdvancePyTorchGeometricTutorials
https://github.com/eemlcommunity/PracticalSessions2021
https://github.com/sum-coderepo/PytorchGeometricTutorial
https://antoniolonga.github.io/
https://github.com/geopanag/pandemic_tgnn Transfer Graph Neural Networks for Pandemic Forecasting
https://github.com/dawnranger/pytorch-AGNN
https://github.com/zfjsail/gae-pytorch/tree/c0b95cac8eb2928d0b5d6d65fee938fe97f60262 Graph Auto-Encoder in PyTorch
https://github.com/MysteryVaibhav/fake_news_semantics -- fake news detection
https://github.com/benedekrozemberczki
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/deepchem/deepchem/tree/master/examples/tutorials
- https://huggingface.co/blog/intro-graphml
- https://pub.towardsai.net/4-graph-neural-networks-you-need-to-know-wlg-gcn-gat-gin-1bf10d29d836
- https://towardsdatascience.com/how-to-design-the-most-powerful-graph-neural-network-3d18b07a6e66
- https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
- https://blog.paperspace.com/geometric-deep-learning-framework-comparison/
- https://www.exxactcorp.com/blog/Deep-Learning/pytorch-geometric-vs-deep-graph-library
- https://medium.com/@pytorch_geometric/link-prediction-on-heterogeneous-graphs-with-pyg-6d5c29677c70
- https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8
- https://antoniolonga.github.io/Pytorch_geometric_tutorials/index.html
- https://antoniolonga.github.io/Advanced_PyG_tutorials/index.html
- https://analyticsindiamag.com/how-to-use-graph-neural-networks-for-text-classification/
- https://towardsdatascience.com/an-introduction-to-graph-neural-network-gnn-for-analysing-structured-data-afce79f4cfdc
- https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef
- https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8
- https://towardsdatascience.com/the-intuition-behind-graph-convolutions-and-message-passing-6dcd0ebf0063
- https://towardsdatascience.com/program-a-simple-graph-net-in-pytorch-e00b500a642d
- https://dev.to/awadelrahman/tutorial-graph-neural-networks-for-social-networks-using-pytorch-2kf
- http://www2.cs.cas.cz/semincm/lectures/2010-04-13-Hall.pdf --- Adjacency Matrix, Standard Laplacian nd Normalized Laplacian
- https://towardsdatascience.com/program-a-simple-graph-net-in-pytorch-e00b500a642d
- https://towardsdatascience.com/pagerank-algorithm-fully-explained-dc794184b4af
- https://theaisummer.com/gnn-architectures/?fbclid=IwAR31IBWcJhNwuZFhzUhjuNaEOoDPr07WO7kEuZaLc46p4BL90-vIiKgYpUU
- https://towardsdatascience.com/graph-analytics-introduction-and-concepts-of-centrality-8f5543b55de3 -- centality
- https://towardsdatascience.com/build-your-first-graph-neural-network-model-to-predict-traffic-speed-in-20-minutes-b593f8f838e5
- https://smartmobilityalgorithms.github.io/book/content/GraphSearchAlgorithms/index.html
- https://medium.com/swlh/recommendation-system-implementation-with-deep-learning-and-pytorch-a03ee84a96f4
- https://towardsdatascience.com/graph-convolutional-network-for-time-series-an-intro-6d1b01ea3bc
- Geometric Deep Learning - an overview
- https://towardsdatascience.com/scalable-graph-transformers-for-million-nodes-2f0014ceb9d4
https://medium.com/criteo-engineering/top-applications-of-graph-neural-networks-2021-c06ec82bfc18
https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://towardsdatascience.com/graph-neural-network-gnn-architectures-for-recommendation-systems-7b9dd0de0856
https://towardsdatascience.com/training-neural-networks-to-predict-rankings-8a3308c472e6
Anomaly Detection in Ecommerce by GNN:-
a. https://medium.com/walmartglobaltech/an-overview-of-graph-neural-networks-for-anomaly-detection-in-e-commerce-87516931d38
b. https://medium.com/walmartglobaltech/an-overview-of-graph-neural-networks-for-anomaly-detection-in-e-commerce-b4c165b8f08a
https://datascience.stackexchange.com/questions/64278/what-is-a-channel-in-a-cnn
https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
https://www.analyticsvidhya.com/blog/2019/10/building-image-classification-models-cnn-pytorch/
https://danielegrattarola.github.io/posts/2021-03-12/gnn-lecture-part-2.html
https://david010.medium.com/graph-neural-networks-3346c6fe7553
https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/understanding-gnns/
https://towardsdatascience.com/graph-neural-network-gnn-architectures-for-recommendation-systems-7b9dd0de0856
https://arshren.medium.com/different-graph-neural-network-implementation-using-pytorch-geometric-23f5bf2f3e9f
https://github.com/alelab-upenn/graph-neural-networks/tree/master/alegnn/modules
https://github.com/mtiezzi/torch_gnn -- Wrapper over pytorch GNN
https://colab.research.google.com/drive/1wKwdottbWOxTOgwVnaSLRzPAJPDP9z9n#scrollTo=S3VjuByGAx_V
https://colab.research.google.com/drive/1DIQm9rOx2mT1bZETEeVUThxcrP1RKqAn
https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial7/GNN_overview.ipynb
https://colab.research.google.com/drive/16QTNLSJUD_vTYF9fjHCPwC0Dz2_ysU0W#scrollTo=SZq--U4wzwFN
PyData Tel Aviv Meetup: Node2vec - Elior Cohen 22 Nov 2018
Antonio Longa Pytorch Geometric tutorial
Antonio Longa Advanced PyTorch Geometric
DeepFindr small videos on GNN
Graph Embeddings and PyTorch-BigGraph
AMMI Geometric Deep Learning Course (2021)
AMMI Geometric Deep Learning Course (2022)
Learning on Graphs Conference
- https://github.com/twitter/the-algorithm
- https://github.com/twitter/util
- https://github.com/twitter/the-algorithm-ml
https://huggingface.co/deep-rl-course/unit0/introduction
https://paperswithcode.com/datasets
GNN-in-RS-wusw14
GNNPapers-thunlp
Graph-in-Recommendation-Systems-JockWang
GNN-Recommender-Systems-tsinghua-fib-lab
https://github.com/hhaji/Deep-Learning
GNN4NLP-Papers-IndexFziQ
annotated_deep_learning_paper_implementations-labmlai
Recommendation System Paper List-tangxyw git
https://wandb.ai/syllogismos
https://geometricdeeplearning.com/lectures/
https://gnn.seas.upenn.edu/ https://www.youtube.com/@alelabalelab5337/playlists
https://hhaji.github.io/Deep-Learning/Graph-Neural-Networks/
- https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c
- https://analyticsindiamag.com/a-complete-tutorial-on-masked-language-modelling-using-bert/
- https://www.analyticsvidhya.com/blog/2022/09/fine-tuning-bert-with-masked-language-modeling/
- https://blog.humanfirst.ai/how-to-create-a-custom-fine-tuned-prediction-model-using-base-gpt-3-models/
- https://medium.com/analytics-vidhya/understanding-the-gpt-2-source-code-part-1-4481328ee10b -- Understanding the GPT-2 Source Code Part 1
- https://www.youtube.com/watch?v=kCc8FmEb1nY -- Let's build GPT: from scratch, in code, spelled out. Andrej Karpathy
- https://github.com/karpathy/nanoGPT
- https://github.com/karpathy/ng-video-lecture/
- https://github.com/lyeoni/gpt-pytorch
Transformers
- Part 1- overview-of-functionality
- Part 2- how-it-works-step-by-step
- Part 3- multi-head-attention-deep-dive
Into the Transformers
illustrated-guide-to-transformers-step-by-step-explanatio
transformers-an-overview-of-the-most-novel-ai-architecture
illustrated-transformer
7-things-you-didnt-know-about-the-transformer
10 Things You Need to Know About BERT and the Transformer Architecture
Beautifully Illustrated: NLP Models from RNN to Transformer
- jsbaan/transformer-from-scratch
- pbloem/former
- https://data.dgl.ai/tutorial/7_transformer.py
- https://github.com/dmlc/dgl/tree/c4aa74baf80551515c8f58244137deedea920172/examples/pytorch/transformer
GRAPH ATTENTION NETWORKS Petar Velickovic
https://github.com/dmlc/dgl/tree/master/tutorials
https://github.com/raunakkmr/Graph-Attention-Networks
https://github.com/gordicaleksa/pytorch-GAT
https://gordicaleksa.medium.com/how-to-get-started-with-graph-machine-learning-afa53f6f963a
https://github.com/Diego999/pyGAT
https://github.com/HeapHop30/graph-attention-nets
https://github.com/Haiyang-W/DTI-GAT
https://github.com/DaehanKim/vgae_pytorch
https://github.com/zltao/MGAT
https://github.com/thunlp/KernelGAT
https://github.com/taishan1994/pytorch_gat
https://github.com/dice-group/GATES
https://petar-v.com/GAT/
https://github.com/sooftware/attentions
https://github.com/dsgiitr/graph_nets
https://towardsdatascience.com/graph-attention-networks-under-the-hood-3bd70dc7a87
https://modulai.io/blog/graph-networks-1/
https://dsgiitr.com/blogs/gat/ -- Explained nicely
https://docs.dgl.ai/en/0.8.x/tutorials/models/1_gnn/9_gat.html -- Explained nicely
https://antoniolonga.github.io/Pytorch_geometric_tutorials/posts/post3.html
https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f7f8242599e0
https://towardsdatascience.com/graph-attention-networks-in-python-975736ac5c0c
https://mlabonne.github.io/blog/gat/
https://github.com/AnirudhDagar/MessagePassing_for_GNNs
https://towardsdatascience.com/the-intuition-behind-graph-convolutions-and-message-passing-6dcd0ebf0063
https://github.com/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial7/GNN_overview.ipynb -- For GCN and MessagePassing
https://tkipf.github.io/graph-convolutional-networks/ -- For GCN and MessagePassing
https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://j.blaszyk.me/tech-blog/geometric-deep-learning-overview/
https://towardsdatascience.com/an-intuitive-explanation-of-graphsage-6df9437ee64f
https://dsgiitr.com/blogs/graphsage/
https://github.com/Jhy1993/HAN
https://github.com/BUPT-GAMMA/HGAT/
https://github.com/zhulf0804/GCN.PyTorch
https://github.com/zjost/blog_code -- GCN from Numpy
https://github.com/sw-gong/GNN-Tutorial/blob/master/GNN-tutorial-solution.ipynb
https://github.com/tkipf/pygcn
https://tkipf.github.io/graph-convolutional-networks/
https://github.com/praxidike97/GraphNeuralNet
https://github.com/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial7/GNN_overview.ipynb
https://github.com/imayachita/Explore_GCN/blob/master/Building_GCN.ipynb -- From scratch
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee
https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-62acf5b143d0
https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
https://towardsai.net/p/l/graph-convolutional-networks-gcn-explained-at-high-level
https://jonathan-hui.medium.com/graph-convolutional-networks-gcn-pooling-839184205692
https://www.topbots.com/graph-convolutional-networks/?sfw=pass1647722726
https://dl.acm.org/doi/fullHtml/10.1145/3442381.3449925#sec-11
https://elizavetalebedeva.com/tag/graphs/
https://antonsruberts.github.io/graph/gcn/ Graph Convolutional Networks for Classification
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801
https://towardsdatascience.com/graph-neural-networks-for-multi-relational-data-27968a2ed143
https://betterprogramming.pub/a-guide-on-the-encoder-decoder-model-and-the-attention-mechanism-401c836e2cdb
https://github.com/cmhungsteve/Awesome-Transformer-Attention
https://medium.com/intel-student-ambassadors/implementing-attention-models-in-pytorch-f947034b3e66
https://medium.com/mlearning-ai/understanding-and-coding-the-attention-mechanism-the-magic-behind-transformers-fe707a85cc3f
https://towardsdatascience.com/attention-and-its-different-forms-7fc3674d14dc
YouTube - Scaled Dot Product Attention explained (Transformers)
https://arxiv.org/pdf/2007.15293.pdf
ihollywhy/DistillGCN.PyTorch
ZZy979/pytorch-tutorial/tree/master/gnn/dgl
zfjsail/gae-pytorch
shionhonda/gae-dgl
dmlc/dgl/blob/master/docs/source/guide/graph-heterogeneous.rst
dmlc/dgl/tree/master/examples/pytorch/han
Jhy1993/HAN
chuxuzhang/KDD2019_HetGNN
UCLA-DM/HGT-DGL
- https://medium.com/@pytorch_geometric/link-prediction-on-heterogeneous-graphs-with-pyg-6d5c29677c70
- https://www.jianshu.com/p/767950b560c4
- https://docs.dgl.ai/generated/dgl.nn.mxnet.conv.GATConv.html
- https://lifesci.dgl.ai/_modules/dgllife/model/gnn/gat.html
- https://chowdera.com/2022/02/202202161012041716.html
- https://docs.dgl.ai/en/0.7.x/tutorials/blitz/4_link_predict.html Link Prediction DGL
- https://qdmana.com/2021/12/202112300014335298.html#_699 Node classification and regression, Link prediction, Edge classification and regression, Whole graph classification
- https://blog.katastros.com/a?ID=01600-8d070c20-6b1a-4f57-9459-ec545cc6a805
- https://docs.dgl.ai/generated/dgl.nn.pytorch.HeteroGraphConv.html DGL HeteroGraphConv
- https://docs.dgl.ai/generated/dgl.nn.pytorch.HeteroEmbedding.html DGL HeteroEmbedding
- HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification
- https://arthurlee-73761.medium.com/kdd-19-heterogeneous-graph-neural-network-9a9202edaa90
- pytorch_geometric link-prediction-on-heterogeneous-graphs - Link Prediction
https://github.com/zfjsail/gae-pytorch
https://github.com/wehos/awesome-graph-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://towardsdatascience.com/into-the-transformer-5ad892e0cee
https://peterbloem.nl/blog/transformers --- github
https://medium.com/@hunter-j-phillips -- 8 series blogs
https://github.com/seongjunyun/Graph_Transformer_Networks
https://github.com/pyg-team/pytorch_geometric/blob/82de9543022d69e5703c17179d77579521ebb43a/examples/tgn.py
https://github.com/graphdeeplearning/graphtransformer
https://web.stanford.edu/class/cs25/ -- Transformer United
-- 8 lectures on Transformers
https://github.com/UCLA-DM/pyHGT -- Heterogeneous Graph Transformer (HGT) PYG Version
https://github.com/dmlc/dgl/tree/master/examples/pytorch/hgt Heterogeneous Graph Transformer (HGT) DGL Version
https://paperswithcode.com/paper/graph-transformer-networks-1
https://arxiv.org/abs/2012.09699 -- A Generalization of Transformer Networks to Graphs
https://docs.dgl.ai/en/0.9.x/tutorials/models/4_old_wines/7_transformer.html -- dgl
https://arxiv.org/pdf/2003.01332.pdf
https://arxiv.org/pdf/1911.06455.pdf -- GraphTransformerNetworks
https://arxiv.org/pdf/2205.10852.pdf -- Relphormer:RelationalGraphTransformerfor KnowledgeGraphRepresentations
https://arxiv.org/pdf/1911.07470.pdf -- GraphTransformerforGraph-to-SequenceLearning∗
https://towardsdatascience.com/graph-transformer-generalization-of-transformers-to-graphs-ead2448cff8b
https://towardsdatascience.com/graphgps-navigating-graph-transformers-c2cc223a051c
https://huggingface.co/blog/graphml-classification
- https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
- https://github.com/mklimasz/TransE-PyTorch
- https://github.com/uma-pi1/kge
- https://github.com/torchkge-team/torchkge
- https://towardsdatascience.com/summary-of-translate-model-for-knowledge-graph-embedding-29042be64273
- https://towardsdatascience.com/introduction-to-knowledge-graph-embedding-with-dgl-ke-77ace6fb60ef
- https://medium.com/@amine.dadoun/knowledge-graph-embeddings-101-2cc1ca5db44f
- https://towardsdatascience.com/introduction-to-graph-representation-learning-a51c963d8d11
- https://medium.com/@amine.dadoun/introduction-to-knowledge-graph-based-recommender-systems-34254efd1960
- https://medium.com/@emreeyukseel/a-brief-summary-of-knowledge-graphs-5b9d854235e5
- https://medium.com/swlh/text-to-knowledge-graph-683002cde6e0
- https://towardsdatascience.com/how-to-build-a-knowledge-graph-with-neo4j-and-transformers-72b9471d6969
- https://medium.com/@peter.lawrence_47665/knowledge-graphs-large-language-models-the-ability-for-users-to-ask-their-own-questions-e4afc348fa72
- https://github.com/totogo/awesome-knowledge-graph
- https://github.com/heathersherry/Knowledge-Graph-Tutorials-and-Papers
- https://github.com/ZihengZZH/awesome-multimodal-knowledge-graph
https://github.com/shiivangii/SpotFake
https://github.com/valayDave/fake-news-detection-han
https://github.com/faiazrahman/Multimodal-Fake-News-Detection
https://github.com/chenxwh/fake-news-detection
https://arxiv.org/abs/2007.03316 GNN with Continual Learning for Fake News Detection from Social Media
https://github.com/MysteryVaibhav/RWR-GAE
https://github.com/iiscleap/multimodal_emotion_recognition
https://github.com/rsinghlab/maddi
https://github.com/sum-coderepo/multimodal-deep-learning
https://github.com/pliang279/awesome-multimodal-ml
https://github.com/enoche/MultimodalRecSys
https://github.com/orgs/open-mmlab/repositories
https://arxiv.org/abs/2203.13883 -- Multi-modal Misinformation Detection: Approaches, Challenges and Opportunities
https://paperswithcode.com/paper/towards-multimodal-sarcasm-detection-an-1 -- Towards Multimodal Sarcasm Detection
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9541113 -- Multi-Level Multi-Modal Cross-Attention Network for Fake News Detection
https://arxiv.org/abs/2203.05880 -- Multi-modal Graph Learning for Disease Prediction
https://dl.acm.org/doi/fullHtml/10.1145/3485447.3512176 -- Multimodal Continual Graph Learning with Neural Architecture Search
https://arxiv.org/abs/2209.03299 -- Multimodal learning with graphs
https://towardsdatascience.com/multimodal-deep-learning-ce7d1d994f4
https://paperswithcode.com/task/multimodal-deep-learning#datasets
https://paperswithcode.com/paper/multimodal-attention-based-deep-learning-for -- Alzheimer's Disease Diagnosis
1. Michael Galkin - medium github https://migalkin.github.io/
- https://towardsdatascience.com/denoising-diffusion-generative-models-in-graph-ml-c496af5811c5
- https://medium.com/swlh/machine-learning-on-knowledge-graphs-neurips-2020-6ef2da78f529
- https://mgalkin.medium.com/knowledge-graphs-iclr-2021-6e0b52c80686
- https://towardsdatascience.com/nodepiece-tokenizing-knowledge-graphs-6dd2b91847aa
- https://mgalkin.medium.com/knowledge-graphs-emnlp-2021-8f52dff928d8
- https://towardsdatascience.com/inductive-link-prediction-in-knowledge-graphs-23f249c31961
- https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f7f8242599e0
- https://towardsdatascience.com/graphgps-navigating-graph-transformers-c2cc223a051c
- https://towardsdatascience.com/graph-ml-in-2023-the-state-of-affairs-1ba920cb9232
https://arshren.medium.com/explainability-of-graph-neural-network-52e9dd43cf76
https://medium.com/@pytorch_geometric/graph-machine-learning-explainability-with-pyg-ff13cffc23c2
https://github.com/thunlp/GNNPapers
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf -- Representation Learning on Graphs: Methods and Applications
Title | Github | Link |
---|---|---|
Bi-Level Graph Neural Networks for Drug-Drug Interaction Prediction | codeKgu/BiLevel-Graph-Neural-Network | link |
NEURAL MESSAGE PASSING FOR MULTI-LABEL CLASSIFICATION | QData/LaMP | link |
MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding | cynricfu/MAGNN | link |
Graph Neural Fake News Detection with External Knowledge | BUPT-GAMMA/CompareNet_FakeNewsDetection | link |
Positional Encoder Graph Neural Networks for Geographic Data | konstantinklemmer/pe-gnn | link |
Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation Under Translational Assumptions | Hunter-DDM/InvTransE-and-InvRotatE | link |
Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery | yulun-rayn/dgapn | link |
DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention Network | junkangwu/DisenKGAT | link |
Fine-grained Fact Verification with Kernel Graph Attention Network | thunlp/KernelGAT | link |
Transferable Graph Generation for Zero-shot and Few-shot Learning | zcrwind/tgg-pytorch | link |
Signed Graph Attention Networks | huangjunjie-cs/SiGAT | link |
Graph Attention Auto-Encoders | amin-salehi/GATE | link |
Graph Classification using Structural Attention | benedekrozemberczki/GAM | link |
How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision | dongkwan-kim/SuperGAT | link |
Sparse Graph Attention Networks | Yangyeeee/SGAT | link |
Social Attention: Modeling Attention in Human Crowds | huang-xx/STGAT | link |
Nothing Stands Alone: Relational Fake News Detection with Hypergraph Neural Networks | ujeong1/IEEEBigdata22_HGFND | link |
ESA: Entity Summarization with Attention | djwei96/ESA | link |
BertGCN: Transductive Text Classification by Combining GCN and BERT | ZeroRin/BertGCN | link |
RAGA: Relation-aware Graph Attention Networks for Global Entity Alignment | zhurboo/RAGA | link |
Graph Attention Multi-Layer Perceptron | zwt233/GAMLP | link |
Knowledge-Enriched Transformer for Emotion Detection in Textual Conversations | zhongpeixiang/KET | link |
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs | deepakn97/relationPrediction | link |
Graph Neural Networks for Social Recommendation | wenqifan03/GraphRec-WWW19 | link |
MultimodalTranslation-BasedApproach for KnowledgeGraphRepresentationLearning | UKPLab/starsem18-multimodalKB | link |
AttendingtoGraphTransformers | luis-mueller/probing-graph-transformers | link |
Semi-supervisedUserProfilingwithHeterogeneousGraphAttentionNetworks | TachiChan/IJCAI2019_HGAT | link |