/Diabetes-Predection-using-Ensemble-Learning

This research work summarized different machine learning algorithms to create models for predicting diabetes patients utilizing the Diabetes Dataset (PIDD) from the UCI repository. The classifiers were K-Nearest Neighbors, Naïve Bayes, Support Vector, Decision Tree, Random Forest, Logistic Regression and Ensemble Model using a voting classifier.

Primary LanguageJupyter Notebook

Watchers