/mmsegmentation

OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Primary LanguagePythonApache License 2.0Apache-2.0


docs badge codecov license

Documentation: https://mmsegmentation.readthedocs.io/

Introduction

MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.3 to 1.5.

demo image

Major features

  • Unified Benchmark

    We provide a unified benchmark toolbox for various semantic segmentation methods.

  • Modular Design

    We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.

  • Support of multiple methods out of box

    The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.

  • High efficiency

    The training speed is faster than or comparable to other codebases.

License

This project is released under the Apache 2.0 license.

Benchmark and model zoo

Results and models are available in the model zoo.

Supported backbones:

  • ResNet
  • ResNeXt
  • HRNet

Supported methods:

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see getting_started.md for the basic usage of MMSegmentation. There are also tutorials for adding new dataset, designing data pipeline, and adding new modules.

A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.

Contributing

We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.

Many thanks to Ruobing Han (@drcut), Xiaoming Ma(@aishangmaxiaoming), Shiguang Wang (@sunnyxiaohu) for deployment support.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@misc{mmseg2020,
  author={Xu, Jiarui and Chen, Kai and Lin, Dahua},
  title={{MMSegmenation}},
  howpublished={\url{https://github.com/open-mmlab/mmsegmentation}},
  year={2020}
}

Contact

This repo is currently maintained by Jiarui Xu (@xvjiarui), Kai Chen (@hellock).