Unofficial PyTorch implementation of the paper "HIGH FIDELITY SPEECH ENHANCEMENT WITH BAND-SPLIT RNN" (https://arxiv.org/abs/2212.00406) on VCTK-DEMAND Dataset (https://datashare.ed.ac.uk/handle/10283/2791).
Choosed parameter settings
N (feature dimension) : 64, L (the number of lstm layers) : 5
PESQ | SSNR | STOI | |
---|---|---|---|
Noisy | 1.97 | 1.68 | 0.91 |
BSRNN(N=64, L=5) | 3.10 | 9.56 | 0.95 |
Audio files are in saved_tracks_best
folder.
Used packages are can be installed by:
pip install -r requirements.txt
Download VCTK-DEMAND dataset (https://datashare.ed.ac.uk/handle/10283/2791), change the dataset dir:
-VCTK-DEMAND/
-train/
-noisy/
-clean/
-test/
-noisy/
-clean/
python train.py --data_dir <dir to VCTK-DEMAND dataset>
If you want to adjust parameters (N, L) of the model, change the value of variables in train.py
.
self.model = BSRNN(num_channel=64, num_layer=5).cuda()
python evaluation.py --test_dir <dir to VCTK-DEMAND/test> --model_path <path to the best ckpt>
- https://github.com/ruizhecao96/CMGAN (MIT License)