CS205 Computing Foundations for Computational Science Final Project
Harvard University, 2018 Spring
Team members: Weihang Zhang, Xuefeng Peng, Jiacheng Shi, Ziqi Guo
This page only provides technical documentations about the project. For a complete view of our project including motivation, design approach, results and analysis, please head over to the project website.
Image stitching or photo stitching is the process of combining multiple photographic images with overlapping fields of view to produce a segmented panorama or high-resolution image (example below).
(source: http://www.arcsoft.com/technology/stitching.html)
In this project, we want to use big compute techniques to parallelize the algorithms of image stitching, so that we can stream videos from adjacent camera into a single panoramic view.
- GCC 6 or higher
- OpenCV 3.4.0 or higher
- pkg-config
cd
to one of the surf_sequential/, surf_omp/, or surf_openacc/ folders before compiling your code.
g++-7 -std=c++11 -fpermissive -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
Adapt g++-7
to the version of g++.
g++ -std=c++11 -fpermissive -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
g++-7 -fopenmp -std=c++11 -fpermissive -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
Adapt g++-7
to the version of g++.
g++ -fopenmp -std=c++11 -fpermissive -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
The OpenACC version can only be compiled and run on a device with GPU. Before compiling, set the environment with source env.sh
.
pgc++ -acc -ta=tesla:cc60 -Minfo -std=c++11 -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
pgc++ -acc -ta=tesla -Minfo -std=c++11 -O3 -o test main.cpp fasthessian.cpp integral.cpp ipoint.cpp surf.cpp utils.cpp `pkg-config opencv --cflags --libs`
To run test cases, first compile with instructions above, but without using any parallelization (for OpenMP, remove -fopenmp
; for OpenACC, use g++
instead of pgc++
).
Then run:
sh sample_test.sh
When the stitched image pops out, press Esc
button.
The test shell script will check the output with the standard output running on our development machine. If it does not print anything after "Took: xxx seconds" line, then you are good to go!
For more examples, go to the Example section and follow the command to compare with the correct outputs.
./test -m <mode> [...]
Argument Options (< > after flag indicates argument is required)
-
-m | --mode < >:
- 0: run SURF on a single image
- 1: run static image match between a pair of images
- 2: run image stitching with webcam stream
- 3: run image stitching with local video files
-
-b | --blend_mode: (no additional argument)
- if set, run blending algorithm with stitching; otherwise, run regular stitching algorithm
-
-r | --resolution (for mode 2 and 3 only):
- user-specified resolution
-
-s | --single_mem_cpy: (OpenACC only)
- if set, one single mem copy; otherwise, do memory copy from host to device every response layer
-
-t | --threaded: (OpenACC only)
- if set, using the multi-threading version for task-level parallelization
-
-S/L/R | --src/src1/src2
- path of image/video to be processed. For mode 0,
-S|--src
will be used for single image feature extraction; for mode 1 and mode 3,-LR|--src1 --src2
will be used for image/video stitching from local files - if flags are not set, will use sample image/video given by this repository
- path of image/video to be processed. For mode 0,
-
Command:
./test -m 0
-
Input image:
- Output image:
- Command:
Input image 1 | Input image 2 |
---|---|
- Output image:
- Command:
./test -m 2 -r 720 -s
- Demo: https://youtu.be/DG2lm59jOk8
- Command:
./test -m 2 -r 720 -s -b
- Demo: https://youtu.be/PLp8XQtipk0
- SURF code source: https://github.com/julapy/ofxOpenSurf
- Data source: videos taken from Logitech webcams
- Knowledge references:
- Image stitching overview: http://ppwwyyxx.com/2016/How-to-Write-a-Panorama-Stitcher/
- Keypoint detection: Speed-Up Robust Features (SURF)
- Transformation estimation: Random Sample Consensus (RANSAC)
- Perspective warping: https://github.com/stheakanath/panorama
- Blending: Multi-band Blending: A Multiresolution Spline With Application to Image Mosaics