/diffusion_tutorial

diffusion generative model

Primary LanguageJupyter Notebook

Diffusion 扩散模型

本notebook系列将介绍一种新的生成模型: diffusion 扩散概率模型。

我们将探讨一系列最新 diffusion 的模型以及相关酷炫的应用,将包括如下内容(其中 [x] 表示已经完成):

  • 1 Score matching
  • 2 Langevin dynamics
  • 3 DPM(2015):Deep unsupervised learning using nonequilibrium thermodynamics
  • 4 NCSN(2020): Noise conditional score networks
  • 5 DDPM(2020): Denoising Diffusion Probabilistic Models
  • 6 WAVEGRAD(2020): ESTIMATING GRADIENTS FOR WAVEFORM GENERATION
  • 7 DDIM(2021): DENOISING DIFFUSION IMPLICIT MODELS
  • 8 IDDPM(2021): Improved Denoising Diffusion Probabilistic Models
  • 9 SDE(2021): SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS
  • 10 Guided Diffusion(2021): Diffusion Models Beat GANs on Image Synthesis
  • 11 Classifier Free Diffusion(2021): Classifier-Free Diffusion Guidance
  • 12 Latent Diffusion (2022): High-Resolution Image Synthesis with Latent Diffusion Models
  • 13 CLIP guided diffusion
  • 14 Augmented CLIP Guided Diffusion
  • 15 Disco Diffusion
  • 16 High Resolution Image Synthesis with Latent Diffusion