Official Dgraph client implementation for Python (Python >= v2.7 and >= v3.5), using grpc.
This client follows the Dgraph Go client closely.
Before using this client, we highly recommend that you go through docs.dgraph.io, and understand how to run and work with Dgraph.
- Install
- Supported Versions
- Quickstart
- Using a Client
- Examples
- Development
Install using pip:
pip install pydgraph
Depending on the version of Dgraph that you are connecting to, you will have to use a different version of this client.
Dgraph version | pydgraph version |
---|---|
1.0.X | <= 1.2.0 |
1.1.X | >= 2.0.0 |
1.2.X | >= 2.0.0 |
Build and run the simple project in the examples
folder, which
contains an end-to-end example of using the Dgraph python client. Follow the
instructions in the README of that project.
You can initialize a DgraphClient
object by passing it a list of
DgraphClientStub
clients as variadic arguments. Connecting to multiple Dgraph
servers in the same cluster allows for better distribution of workload.
The following code snippet shows just one connection.
import pydgraph
client_stub = pydgraph.DgraphClientStub('localhost:9080')
client = pydgraph.DgraphClient(client_stub)
To set the schema, create an Operation
object, set the schema and pass it to
DgraphClient#alter(Operation)
method.
schema = 'name: string @index(exact) .'
op = pydgraph.Operation(schema=schema)
client.alter(op)
Starting Dgraph version 20.03.0, indexes can be computed in the background.
You can set run_in_background
field of the pydgraph.Operation
to True
before passing it to the Alter
function. You can find more details
here.
schema = 'name: string @index(exact) .'
op = pydgraph.Operation(schema=schema, run_in_background=True)
client.alter(op)
Operation
contains other fields as well, including drop predicate and drop all.
Drop all is useful if you wish to discard all the data, and start from a clean
slate, without bringing the instance down.
# Drop all data including schema from the Dgraph instance. This is a useful
# for small examples such as this since it puts Dgraph into a clean state.
op = pydgraph.Operation(drop_all=True)
client.alter(op)
To create a transaction, call DgraphClient#txn()
method, which returns a
new Txn
object. This operation incurs no network overhead.
It is good practice to call Txn#discard()
in a finally
block after running
the transaction. Calling Txn#discard()
after Txn#commit()
is a no-op
and you can call Txn#discard()
multiple times with no additional side-effects.
txn = client.txn()
try:
# Do something here
# ...
finally:
txn.discard()
# ...
To create a read-only transaction, call DgraphClient#txn(read_only=True)
.
Read-only transactions are ideal for transactions which only involve queries.
Mutations and commits are not allowed.
txn = client.txn(read_only=True)
try:
# Do some queries here
# ...
finally:
txn.discard()
# ...
To create a read-only transaction that executes best-effort queries, call
DgraphClient#txn(read_only=True, best_effort=True)
. Best-effort queries are
faster than normal queries because they bypass the normal consensus protocol.
For this same reason, best-effort queries cannot guarantee to return the latest
data. Best-effort queries are only supported by read-only transactions.
Txn#mutate(mu=Mutation)
runs a mutation. It takes in a Mutation
object,
which provides two main ways to set data: JSON and RDF N-Quad. You can choose
whichever way is convenient.
Txn#mutate()
provides convenience keyword arguments set_obj
and del_obj
for setting JSON values and set_nquads
and del_nquads
for setting N-Quad
values. See examples below for usage.
We define a person object to represent a person and use it in a transaction.
# Create data.
p = {
'name': 'Alice',
}
# Run mutation.
txn.mutate(set_obj=p)
# If you want to use a mutation object, use this instead:
# mu = pydgraph.Mutation(set_json=json.dumps(p).encode('utf8'))
# txn.mutate(mu)
# If you want to use N-Quads, use this instead:
# txn.mutate(set_nquads='_:alice <name> "Alice" .')
# Delete data.
query = """query all($a: string)
{
all(func: eq(name, $a))
{
uid
}
}"""
variables = {'$a': 'Bob'}
res = txn.query(query, variables=variables)
ppl = json.loads(res.json)
# For a mutation to delete a node, use this:
txn.mutate(del_obj=person)
For a complete example with multiple fields and relationships, look at the
simple project in the examples
folder.
Sometimes, you only want to commit a mutation, without querying anything further.
In such cases, you can set the keyword argument commit_now=True
to indicate
that the mutation must be immediately committed.
A mutation can be executed using txn.do_request
as well.
mutation = txn.create_mutation(set_nquads='_:alice <name> "Alice" .')
request = txn.create_request(mutations=[mutation], commit_now=True)
txn.do_request(request)
A transaction can be committed using the Txn#commit()
method. If your transaction
consisted solely of calls to Txn#query
or Txn#queryWithVars
, and no calls to
Txn#mutate
, then calling Txn#commit()
is not necessary.
An error is raised if another transaction(s) modify the same data concurrently that was modified in the current transaction. It is up to the user to retry transactions when they fail.
txn = client.txn()
try:
# ...
# Perform any number of queries and mutations
# ...
# and finally...
txn.commit()
except Exception as e:
if isinstance(e, pydgraph.AbortedError):
# Retry or handle exception.
else:
raise e
finally:
# Clean up. Calling this after txn.commit() is a no-op
# and hence safe.
txn.discard()
You can run a query by calling Txn#query(string)
. You will need to pass in a
GraphQL+- query string. If you want to pass an additional dictionary of any
variables that you might want to set in the query, call
Txn#query(string, variables=d)
with the variables dictionary d
.
The response would contain the field json
, which returns the response JSON.
Let’s run a query with a variable $a
, deserialize the result from JSON and
print it out:
# Run query.
query = """query all($a: string) {
all(func: eq(name, $a))
{
name
}
}"""
variables = {'$a': 'Alice'}
res = txn.query(query, variables=variables)
# If not doing a mutation in the same transaction, simply use:
# res = client.txn(read_only=True).query(query, variables=variables)
ppl = json.loads(res.json)
# Print results.
print('Number of people named "Alice": {}'.format(len(ppl['all'])))
for person in ppl['all']:
print(person)
This should print:
Number of people named "Alice": 1
Alice
You can also use txn.do_request
function to run the query.
request = txn.create_request(query=query)
txn.do_request(request)
The txn.do_request
function allows you to run upserts consisting of one query and
one mutation. Query variables could be defined and can then be used in the mutation.
To know more about upsert, we highly recommend going through the docs at https://docs.dgraph.io/mutations/#upsert-block.
query = """{
u as var(func: eq(name, "Alice"))
}"""
nquad = """
uid(u) <name> "Alice" .
uid(u) <age> "25" .
"""
mutation = txn.create_mutation(set_nquads=nquad)
request = txn.create_request(query=query, mutations=[mutation], commit_now=True)
txn.do_request(request)
The upsert block also allows specifying a conditional mutation block using an @if
directive. The mutation is executed
only when the specified condition is true. If the condition is false, the mutation is silently ignored.
See more about Conditional Upsert Here.
query = """
{
user as var(func: eq(email, "wrong_email@dgraph.io"))
}
"""
cond = "@if(eq(len(user), 1))"
nquads = """
uid(user) <email> "correct_email@dgraph.io" .
"""
mutation = txn.create_mutation(cond=cond, set_nquads=nquads)
request = txn.create_request(mutations=[mutation], query=query, commit_now=True)
txn.do_request(request)
To clean up resources, you have to call DgraphClientStub#close()
individually for
all the instances of DgraphClientStub
.
SERVER_ADDR = "localhost:9080"
# Create instances of DgraphClientStub.
stub1 = pydgraph.DgraphClientStub(SERVER_ADDR)
stub2 = pydgraph.DgraphClientStub(SERVER_ADDR)
# Create an instance of DgraphClient.
client = pydgraph.DgraphClient(stub1, stub2)
# ...
# Use client
# ...
# Clean up resources by closing all client stubs.
stub1.close()
stub2.close()
Metadata headers such as authentication tokens can be set through the metadata of gRPC methods. Below is an example of how to set a header named "auth-token".
# The following piece of code shows how one can set metadata with
# auth-token, to allow Alter operation, if the server requires it.
# metadata is a list of arbitrary key-value pairs.
metadata = [("auth-token", "the-auth-token-value")]
dg.alter(op, metadata=metadata)
A timeout value representing the number of seconds can be passed to the login
,
alter
, query
, and mutate
methods using the timeout
keyword argument.
For example, the following alters the schema with a timeout of ten seconds:
dg.alter(op, timeout=10)
A CallCredentials
object can be passed to the login
, alter
, query
, and
mutate
methods using the credentials
keyword argument.
The alter
method in the client has an asyncronous version called
async_alter
. The async methods return a future. You can directly call the
result
method on the future. However. The DgraphClient class provides a static
method handle_alter_future
to handle any possible exception.
alter_future = self.client.async_alter(pydgraph.Operation(
schema="name: string @index(term) ."))
response = pydgraph.DgraphClient.handle_alter_future(alter_future)
The query
and mutate
methods int the Txn
class also have async versions
called async_query
and async_mutation
respectively. These functions work
just like async_alter
.
You can use the handle_query_future
and handle_mutate_future
static methods
in the Txn
class to retrieve the result. A short example is given below:
txn = client.txn()
query = "query body here"
future = txn.async_query()
response = pydgraph.Txn.handle_query_future(future)
A working example can be found in the test_asycn.py
test file.
Keep in mind that due to the nature of async calls, the async functions cannot
retry the request if the login is invalid. You will have to check for this error
and retry the login (with the function retry_login
in both the Txn
and
Client
classes). A short example is given below:
client = DgraphClient(client_stubs) # client_stubs is a list of gRPC stubs.
alter_future = client.async_alter()
try:
response = alter_future.result()
except Exception as e:
# You can use this function in the util package to check for JWT
# expired errors.
if pydgraph.util.is_jwt_expired(e):
# retry your request here.
- simple: Quickstart example of using pydgraph.
python setup.py install
# To install for the current user, use this instead:
# python setup.py install --user
If you have made changes to the pydgraph/proto/api.proto
file, you need need
to regenerate the source files generated by Protocol Buffer tools. To do that,
install the grpcio-tools library and then run the following
command:
python scripts/protogen.py
The generated file api_pb2_grpc.py
needs to be changed in recent versions of python.
The required change is outlined below as a diff.
-import api_pb2 as api__pb2
+from . import api_pb2 as api__pb2
To run the tests in your local machine, you can run the script
scripts/local-tests.sh
. This script assumes Dgraph and dgo (Go client) are
already built on the local machine and that their code is in $GOPATH/src
.
It also requires that docker and docker-compose are installed in your machine.
The script will take care of bringing up a Dgraph cluster and bringing it down after the tests are executed. The script uses the port 9180 by default to prevent interference with clusters running on the default port. Docker and docker-compose need to be installed before running the script. Refer to the official Docker documentation for instructions on how to install those packages.
The test.sh
script downloads and installs Dgraph. It is meant for use by our
CI systems and using it for local development is not recommended.