As instructed by RegDA, following datasets can be downloaded automatically:

Aniaml Dataset

Following UDA-Animal-Pose and CCSSL

Pretrained Models

Before training, please make sure style transfer models are downloaded and saved in the "saved_models" folder under this directory. Pretrained style transfer models in all experiments are available here.

Experiments

  • SURREAL-to-LSP
python train_human.py path/to/SURREAL path/to/LSP -s SURREAL -t LSP --target-train LSP_mt --log logs/s2l_exp/syn2real --debug --seed 0 --lambda_t 0  --pretrain-epoch 40 --rotation_stu 60 --shear_stu -30 30 --translate_stu 0.05 0.05 --scale_stu 0.6 1.3 --color_stu 0.25 --blur_stu 0 --rotation_tea 60 --shear_tea -30 30 --translate_tea 0.05 0.05 --scale_tea 0.6 1.3 --color_tea 0.25 --blur_tea 0 -b 32 --mask-ratio 0.5 --k 1 --decoder-name saved_models/decoder_s2l_0_1.pth.tar --s2t-freq 0.5 --s2t-alpha 0 1 --t2s-freq 0.5 --t2s-alpha 0 1 --occlude-rate 0.5 --occlude-thresh 0.9 

SyntheticAnimal-to-TigDog

python train_animal.py --image-path animal_data  --source synthetic_animal_sp_all --target real_animal_all --target_ssl real_animal_all_mt --train_on_all_cat --log logs/syn2real_animal/syn2real --debug --seed 0  --pretrain-epoch 40 --rotation_stu 60 --shear_stu -30 30 --translate_stu 0.05 0.05 --scale_stu 0.6 1.3 --color_stu 0.25 --blur_stu 0 --rotation_tea 60 --shear_tea -30 30 --translate_tea 0.05 0.05 --scale_tea 0.6 1.3 --color_tea 0.25 --blur_tea 0 --k 1 -b 32  --mask-ratio 0.5 --decoder-name saved_models/decoder_animal_0_1.pth.tar --s2t-freq 0.5 --s2t-alpha 0 1 --t2s-freq 0.5 --t2s-alpha 0 1 --occlude-rate 0.5 --occlude-thresh 0.9

SyntheticAnimal-to-AnimalPose

python train_animal_other.py --image-path animal_data  --source synthetic_animal_sp_all_other --target animal_pose --target_ssl animal_pose_mt --train_on_all_cat --log logs/syn2animal_pose/syn2real --debug --seed 0  --pretrain-epoch 40 --rotation_stu 60 --shear_stu -30 30 --translate_stu 0.05 0.05 --scale_stu 0.6 1.3 --color_stu 0.25 --blur_stu 0 --rotation_tea 60 --shear_tea -30 30 --translate_tea 0.05 0.05 --scale_tea 0.6 1.3 --color_tea 0.25 --blur_tea 0 --k 1 -b 32  --mask-ratio 0.5 --decoder-name saved_models/decoder_animal_0_1.pth.tar --s2t-freq 0.5 --s2t-alpha 0 1 --t2s-freq 0.5 --t2s-alpha 0 1 --occlude-rate 0.5 --occlude-thresh 0.9

Acknowledgment

Code borrowed from RegDA, UDA-Aniaml ,UDA-Poseand AdaIN.